Goto

Collaborating Authors

 Rückert, Ulrich


A Hybrid Spiking-Convolutional Neural Network Approach for Advancing Machine Learning Models

arXiv.org Artificial Intelligence

In this article, we propose a novel standalone hybrid Spiking-Convolutional Neural Network (SC-NN) model and test on using image inpainting tasks. Our approach uses the unique capabilities of SNNs, such as event-based computation and temporal processing, along with the strong representation learning abilities of CNNs, to generate high-quality inpainted images. The model is trained on a custom dataset specifically designed for image inpainting, where missing regions are created using masks. The hybrid model consists of SNNConv2d layers and traditional CNN layers. The SNNConv2d layers implement the leaky integrate-and-fire (LIF) neuron model, capturing spiking behavior, while the CNN layers capture spatial features. In this study, a mean squared error (MSE) loss function demonstrates the training process, where a training loss value of 0.015, indicates accurate performance on the training set and the model achieved a validation loss value as low as 0.0017 on the testing set. Furthermore, extensive experimental results demonstrate state-of-the-art performance, showcasing the potential of integrating temporal dynamics and feature extraction in a single network for image inpainting.


Design-Space Exploration of SNN Models using Application-Specific Multi-Core Architectures

arXiv.org Artificial Intelligence

With the motivation and the difficulties that currently exist in comprehending and utilizing the promising features of SNNs, we proposed a novel run-time multi-core architecture-based simulator called "RAVSim" (Runtime Analysis and Visualization Simulator), a cutting-edge SNN simulator, developed using LabVIEW and it is publicly available on their website as an official module. RAVSim is a runtime virtual simulation environment tool that enables the user to interact with the model, observe its behavior of output concentration, and modify the set of parametric values at any time while the simulation is in execution. Recently some popular tools have been presented, but we believe that none of the tools allow users to interact with the model simulation in run time.


A Unified Approach to Entity-Centric Context Tracking in Social Conversations

arXiv.org Artificial Intelligence

In human-human conversations, Context Tracking deals with identifying important entities and keeping track of their properties and relationships. This is a challenging problem that encompasses several subtasks such as slot tagging, coreference resolution, resolving plural mentions and entity linking. We approach this problem as an end-to-end modeling task where the conversational context is represented by an entity repository containing the entity references mentioned so far, their properties and the relationships between them. The repository is updated turn-by-turn, thus making training and inference computationally efficient even for long conversations. This paper lays the groundwork for an investigation of this framework in two ways. First, we release Contrack, a large scale human-human conversation corpus for context tracking with people and location annotations. It contains over 7000 conversations with an average of 11.8 turns, 5.8 entities and 15.2 references per conversation. Second, we open-source a neural network architecture for context tracking. Finally we compare this network to state-of-the-art approaches for the subtasks it subsumes and report results on the involved tradeoffs.


Coordinated Heterogeneous Distributed Perception based on Latent Space Representation

arXiv.org Artificial Intelligence

Abstract-- We investigate a reinforcement approach for distributed sensing based on the latent space derived from multimodal deep generative models. Our contribution provides insights to the following benefits: Detections can be exchanged effectively between robots equipped with unimodal sensors due to a shared latent representation of information that is trained by a Variational Auto Encoder (VAE). Sensor-fusion can be applied asynchronously due to the generative feature of the VAE. Deep Q-Networks (DQNs) are trained to minimize uncertainty in latent space by coordinating robots to a Point-of- Interest (PoI) where their sensor modality can provide beneficial information about the PoI. Additionally, we show that the decrease in uncertainty can be defined as the direct reward signal for training the DQN.


A Unifying View of Multiple Kernel Learning

arXiv.org Machine Learning

Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion's dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.