R, Pragna
Calorie Burn Estimation in Community Parks Through DLICP: A Mathematical Modelling Approach
Sebastian, Abhishek, A, Annis Fathima, R, Pragna, S, Madhan Kumar, M, Jesher Joshua
Community parks play a crucial role in promoting physical activity and overall well-being. This study introduces DLICP (Deep Learning Integrated Community Parks), an innovative approach that combines deep learning techniques specifically, face recognition technology with a novel walking activity measurement algorithm to enhance user experience in community parks. The DLICP utilizes a camera with face recognition software to accurately identify and track park users. Simultaneously, a walking activity measurement algorithm calculates parameters such as the average pace and calories burned, tailored to individual attributes. Extensive evaluations confirm the precision of DLICP, with a Mean Absolute Error (MAE) of 5.64 calories and a Mean Percentage Error (MPE) of 1.96%, benchmarked against widely available fitness measurement devices, such as the Apple Watch Series 6. This study contributes significantly to the development of intelligent smart park systems, enabling real-time updates on burned calories and personalized fitness tracking.
Enhancing Intrusion Detection In Internet Of Vehicles Through Federated Learning
Sebastian, Abhishek, R, Pragna, G, Sudhakaran, N, Renjith P, H, Leela Karthikeyan
Federated learning is a technique of decentralized machine learning. that allows multiple parties to collaborate and learn a shared model without sharing their raw data. Our paper proposes a federated learning framework for intrusion detection in Internet of Vehicles (IOVs) using the CIC-IDS 2017 dataset. The proposed framework employs SMOTE for handling class imbalance, outlier detection for identifying and removing abnormal observations, and hyperparameter tuning to optimize the model's performance. The authors evaluated the proposed framework using various performance metrics and demonstrated its effectiveness in detecting intrusions with other datasets (KDD-Cup 99 and UNSW- NB-15) and conventional classifiers. Furthermore, the proposed framework can protect sensitive data while achieving high intrusion detection performance.