Goto

Collaborating Authors

 Quinn, John


Building a Luganda Text-to-Speech Model From Crowdsourced Data

arXiv.org Artificial Intelligence

Text-to-speech (TTS) development for African languages such as Luganda is still limited, primarily due to the scarcity of high-quality, single-speaker recordings essential for training TTS models. Prior work has focused on utilizing the Luganda Common Voice recordings of multiple speakers aged between 20-49. Although the generated speech is intelligible, it is still of lower quality than the model trained on studio-grade recordings. This is due to the insufficient data preprocessing methods applied to improve the quality of the Common Voice recordings. Furthermore, speech convergence is more difficult to achieve due to varying intonations, as well as background noise. In this paper, we show that the quality of Luganda TTS from Common Voice can improve by training on multiple speakers of close intonation in addition to further preprocessing of the training data. Specifically, we selected six female speakers with close intonation determined by subjectively listening and comparing their voice recordings. In addition to trimming out silent portions from the beginning and end of the recordings, we applied a pre-trained speech enhancement model to reduce background noise and enhance audio quality. We also utilized a pre-trained, non-intrusive, self-supervised Mean Opinion Score (MOS) estimation model to filter recordings with an estimated MOS over 3.5, indicating high perceived quality. Subjective MOS evaluations from nine native Luganda speakers demonstrate that our TTS model achieves a significantly better MOS of 3.55 compared to the reported 2.5 MOS of the existing model. Moreover, for a fair comparison, our model trained on six speakers outperforms models trained on a single-speaker (3.13 MOS) or two speakers (3.22 MOS). This showcases the effectiveness of compensating for the lack of data from one speaker with data from multiple speakers of close intonation to improve TTS quality.


Almost Zero-Resource ASR-free Keyword Spotting using Multilingual Bottleneck Features and Correspondence Autoencoders

arXiv.org Machine Learning

We compare features for dynamic time warping based keyword spotting in an almost zero-resource setting. The objective is to support United Nations (UN) humanitarian relief efforts in parts of Africa with severely under-resourced languages. As supervised resource, we restrict ourselves to an easily-compiled small set of isolated keywords. For feature extraction, we integrate a multilingual bottleneck feature extractor (BNF), trained on well-resourced out-of-domain languages, with a correspondence autoencoder (CAE), trained on extremely sparse in-domain data. We find that, on their own, BNFs and CAE features achieve more than 2% absolute performance improvement over baseline MFCCs. However, by using BNFs as input to the CAE, even better performance is achieved, with an 11% absolute improvement in ROC AUC over MFCCs and twice as many top-10 retrievals. We conclude that integrating BNFs with the CAE allows both large out-of-domain and sparse in-domain resources to be exploited for improved ASR-free keyword spotting.


Computational Sustainability and Artificial Intelligence in the Developing World

AI Magazine

The developing regions of the world contain most of the human population and the planet's natural resources, and hence are particularly important to the study of sustainability. Despite some difficult problems in such places, a period of enormous technology-driven change has created new opportunities to address poor management of resources and improve human well-being.


Computational Sustainability and Artificial Intelligence in the Developing World

AI Magazine

The developing regions of the world contain most of the human population and the planet's natural resources, and hence are particularly important to the study of sustainability. Despite some difficult problems in such places, a period of enormous technology-driven change has created new opportunities to address poor management of resources and improve human well-being.


Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care

Neural Information Processing Systems

The observed physiological dynamics of an infant receiving intensive care are affected by many possible factors, including interventions to the baby, the operation of the monitoring equipment and the state of health. The Factorial Switching Kalman Filter can be used to infer the presence of such factors from a sequence of observations, and to estimate the true values where these observations have been corrupted. We apply this model to clinical time series data and show it to be effective in identifying a number of artifactual and physiological patterns.


Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care

Neural Information Processing Systems

The observed physiological dynamics of an infant receiving intensive care are affected by many possible factors, including interventions to the baby, the operation of the monitoring equipment and the state of health. The Factorial Switching Kalman Filter can be used to infer the presence ofsuch factors from a sequence of observations, and to estimate the true values where these observations have been corrupted. We apply this model to clinical time series data and show it to be effective in identifying a number of artifactual and physiological patterns.