Quercia, Daniele
C3AI: Crafting and Evaluating Constitutions for Constitutional AI
Kyrychenko, Yara, Zhou, Ke, Bogucka, Edyta, Quercia, Daniele
Constitutional AI (CAI) guides LLM behavior using constitutions, but identifying which principles are most effective for model alignment remains an open challenge. We introduce the C3AI framework (\textit{Crafting Constitutions for CAI models}), which serves two key functions: (1) selecting and structuring principles to form effective constitutions before fine-tuning; and (2) evaluating whether fine-tuned CAI models follow these principles in practice. By analyzing principles from AI and psychology, we found that positively framed, behavior-based principles align more closely with human preferences than negatively framed or trait-based principles. In a safety alignment use case, we applied a graph-based principle selection method to refine an existing CAI constitution, improving safety measures while maintaining strong general reasoning capabilities. Interestingly, fine-tuned CAI models performed well on negatively framed principles but struggled with positively framed ones, in contrast to our human alignment results. This highlights a potential gap between principle design and model adherence. Overall, C3AI provides a structured and scalable approach to both crafting and evaluating CAI constitutions.
NLPGuard: A Framework for Mitigating the Use of Protected Attributes by NLP Classifiers
Greco, Salvatore, Zhou, Ke, Capra, Licia, Cerquitelli, Tania, Quercia, Daniele
AI regulations are expected to prohibit machine learning models from using sensitive attributes during training. However, the latest Natural Language Processing (NLP) classifiers, which rely on deep learning, operate as black-box systems, complicating the detection and remediation of such misuse. Traditional bias mitigation methods in NLP aim for comparable performance across different groups based on attributes like gender or race but fail to address the underlying issue of reliance on protected attributes. To partly fix that, we introduce NLPGuard, a framework for mitigating the reliance on protected attributes in NLP classifiers. NLPGuard takes an unlabeled dataset, an existing NLP classifier, and its training data as input, producing a modified training dataset that significantly reduces dependence on protected attributes without compromising accuracy. NLPGuard is applied to three classification tasks: identifying toxic language, sentiment analysis, and occupation classification. Our evaluation shows that current NLP classifiers heavily depend on protected attributes, with up to $23\%$ of the most predictive words associated with these attributes. However, NLPGuard effectively reduces this reliance by up to $79\%$, while slightly improving accuracy.
WEIRD ICWSM: How Western, Educated, Industrialized, Rich, and Democratic is Social Computing Research?
Septiandri, Ali Akbar, Constantinides, Marios, Quercia, Daniele
Much of the research in social computing analyzes data from social media platforms, which may inherently carry biases. An overlooked source of such bias is the over-representation of WEIRD (Western, Educated, Industrialized, Rich, and Democratic) populations, which might not accurately mirror the global demographic diversity. We evaluated the dependence on WEIRD populations in research presented at the AAAI ICWSM conference; the only venue whose proceedings are fully dedicated to social computing research. We did so by analyzing 494 papers published from 2018 to 2022, which included full research papers, dataset papers and posters. After filtering out papers that analyze synthetic datasets or those lacking clear country of origin, we were left with 420 papers from which 188 participants in a crowdsourcing study with full manual validation extracted data for the WEIRD scores computation. This data was then used to adapt existing WEIRD metrics to be applicable for social media data. We found that 37% of these papers focused solely on data from Western countries. This percentage is significantly less than the percentages observed in research from CHI (76%) and FAccT (84%) conferences, suggesting a greater diversity of dataset origins within ICWSM. However, the studies at ICWSM still predominantly examine populations from countries that are more Educated, Industrialized, and Rich in comparison to those in FAccT, with a special note on the 'Democratic' variable reflecting political freedoms and rights. This points out the utility of social media data in shedding light on findings from countries with restricted political freedoms. Based on these insights, we recommend extensions of current "paper checklists" to include considerations about the WEIRD bias and call for the community to broaden research inclusivity by encouraging the use of diverse datasets from underrepresented regions.
Using Self-supervised Learning Can Improve Model Fairness
Yfantidou, Sofia, Spathis, Dimitris, Constantinides, Marios, Vakali, Athena, Quercia, Daniele, Kawsar, Fahim
Self-supervised learning (SSL) has become the de facto training paradigm of large models, where pre-training is followed by supervised fine-tuning using domain-specific data and labels. Despite demonstrating comparable performance with supervised methods, comprehensive efforts to assess SSL's impact on machine learning fairness (i.e., performing equally on different demographic breakdowns) are lacking. Hypothesizing that SSL models would learn more generic, hence less biased representations, this study explores the impact of pre-training and fine-tuning strategies on fairness. We introduce a fairness assessment framework for SSL, comprising five stages: defining dataset requirements, pre-training, fine-tuning with gradual unfreezing, assessing representation similarity conditioned on demographics, and establishing domain-specific evaluation processes. We evaluate our method's generalizability on three real-world human-centric datasets (i.e., MIMIC, MESA, and GLOBEM) by systematically comparing hundreds of SSL and fine-tuned models on various dimensions spanning from the intermediate representations to appropriate evaluation metrics. Our findings demonstrate that SSL can significantly improve model fairness, while maintaining performance on par with supervised methods-exhibiting up to a 30% increase in fairness with minimal loss in performance through self-supervision. We posit that such differences can be attributed to representation dissimilarities found between the best- and the worst-performing demographics across models-up to x13 greater for protected attributes with larger performance discrepancies between segments.
Evaluating Fairness in Self-supervised and Supervised Models for Sequential Data
Yfantidou, Sofia, Spathis, Dimitris, Constantinides, Marios, Vakali, Athena, Quercia, Daniele, Kawsar, Fahim
Self-supervised learning (SSL) has become the de facto training paradigm of large models where pre-training is followed by supervised fine-tuning using domain-specific data and labels. Hypothesizing that SSL models would learn more generic, hence less biased, representations, this study explores the impact of pre-training and fine-tuning strategies on fairness (i.e., performing equally on different demographic breakdowns). Motivated by human-centric applications on real-world timeseries data, we interpret inductive biases on the model, layer, and metric levels by systematically comparing SSL models to their supervised counterparts. Our findings demonstrate that SSL has the capacity to achieve performance on par with supervised methods while significantly enhancing fairness--exhibiting up to a 27% increase in fairness with a mere 1% loss in performance through self-supervision. Ultimately, this work underscores SSL's potential in human-centric computing, particularly high-stakes, data-scarce application domains like healthcare.
Beyond Accuracy: A Critical Review of Fairness in Machine Learning for Mobile and Wearable Computing
Yfantidou, Sofia, Constantinides, Marios, Spathis, Dimitris, Vakali, Athena, Quercia, Daniele, Kawsar, Fahim
The field of mobile and wearable computing is undergoing a revolutionary integration of machine learning. Devices can now diagnose diseases, predict heart irregularities, and unlock the full potential of human cognition. However, the underlying algorithms powering these predictions are not immune to biases with respect to sensitive attributes (e.g., gender, race), leading to discriminatory outcomes. The goal of this work is to explore the extent to which the mobile and wearable computing community has adopted ways of reporting information about datasets and models to surface and, eventually, counter biases. Our systematic review of papers published in the Proceedings of the ACM Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) journal from 2018-2022 indicates that, while there has been progress made on algorithmic fairness, there is still ample room for growth. Our findings show that only a small portion (5%) of published papers adheres to modern fairness reporting, while the overwhelming majority thereof focuses on accuracy or error metrics. To generalize these results across venues of similar scope, we analyzed recent proceedings of ACM MobiCom, MobiSys, and SenSys, IEEE Pervasive, and IEEE Transactions on Mobile Computing Computing, and found no deviation from our primary result. In light of these findings, our work provides practical guidelines for the design and development of mobile and wearable technologies that not only strive for accuracy but also fairness.
Dream Content Discovery from Reddit with an Unsupervised Mixed-Method Approach
Das, Anubhab, ล ฤepanoviฤ, Sanja, Aiello, Luca Maria, Mallett, Remington, Barrett, Deirdre, Quercia, Daniele
Dreaming is a fundamental but not fully understood part of human experience that can shed light on our thought patterns. Traditional dream analysis practices, while popular and aided by over 130 unique scales and rating systems, have limitations. Mostly based on retrospective surveys or lab studies, they struggle to be applied on a large scale or to show the importance and connections between different dream themes. To overcome these issues, we developed a new, data-driven mixed-method approach for identifying topics in free-form dream reports through natural language processing. We tested this method on 44,213 dream reports from Reddit's r/Dreams subreddit, where we found 217 topics, grouped into 22 larger themes: the most extensive collection of dream topics to date. We validated our topics by comparing it to the widely-used Hall and van de Castle scale. Going beyond traditional scales, our method can find unique patterns in different dream types (like nightmares or recurring dreams), understand topic importance and connections, and observe changes in collective dream experiences over time and around major events, like the COVID-19 pandemic and the recent Russo-Ukrainian war. We envision that the applications of our method will provide valuable insights into the intricate nature of dreaming.
A Systematic Literature Review of Human-Centered, Ethical, and Responsible AI
Tahaei, Mohammad, Constantinides, Marios, Quercia, Daniele, Muller, Michael
As Artificial Intelligence (AI) continues to advance rapidly, it becomes increasingly important to consider AI's ethical and societal implications. In this paper, we present a bottom-up mapping of the current state of research at the intersection of Human-Centered AI, Ethical, and Responsible AI (HCER-AI) by thematically reviewing and analyzing 164 research papers from leading conferences in ethical, social, and human factors of AI: AIES, CHI, CSCW, and FAccT. The ongoing research in HCER-AI places emphasis on governance, fairness, and explainability. These conferences, however, concentrate on specific themes rather than encompassing all aspects. While AIES has fewer papers on HCER-AI, it emphasizes governance and rarely publishes papers about privacy, security, and human flourishing. FAccT publishes more on governance and lacks papers on privacy, security, and human flourishing. CHI and CSCW, as more established conferences, have a broader research portfolio. We find that the current emphasis on governance and fairness in AI research may not adequately address the potential unforeseen and unknown implications of AI. Therefore, we recommend that future research should expand its scope and diversify resources to prepare for these potential consequences. This could involve exploring additional areas such as privacy, security, human flourishing, and explainability.
Human-Centered Responsible Artificial Intelligence: Current & Future Trends
Tahaei, Mohammad, Constantinides, Marios, Quercia, Daniele, Kennedy, Sean, Muller, Michael, Stumpf, Simone, Liao, Q. Vera, Baeza-Yates, Ricardo, Aroyo, Lora, Holbrook, Jess, Luger, Ewa, Madaio, Michael, Blumenfeld, Ilana Golbin, De-Arteaga, Maria, Vitak, Jessica, Olteanu, Alexandra
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence. While different research communities may use different terminology to discuss similar topics, all of this work is ultimately aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI. In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends to advance this important area of research by fostering collaboration and sharing ideas.
Anticipatory Detection of Compulsive Body-focused Repetitive Behaviors with Wearables
Searle, Benjamin Lucas, Spathis, Dimitris, Constantinides, Marios, Quercia, Daniele, Mascolo, Cecilia
Body-focused repetitive behaviors (BFRBs), like face-touching or skin-picking, are hand-driven behaviors which can damage one's appearance, if not identified early and treated. Technology for automatic detection is still under-explored, with few previous works being limited to wearables with single modalities (e.g., motion). Here, we propose a multi-sensory approach combining motion, orientation, and heart rate sensors to detect BFRBs. We conducted a feasibility study in which participants (N=10) were exposed to BFRBs-inducing tasks, and analyzed 380 mins of signals under an extensive evaluation of sensing modalities, cross-validation methods, and observation windows. Our models achieved an AUC > 0.90 in distinguishing BFRBs, which were more evident in observation windows 5 mins prior to the behavior as opposed to 1-min ones. In a follow-up qualitative survey, we found that not only the timing of detection matters but also models need to be context-aware, when designing just-in-time interventions to prevent BFRBs.