Quellmalz, Michael
Smoothed Distance Kernels for MMDs and Applications in Wasserstein Gradient Flows
Rux, Nicolaj, Quellmalz, Michael, Steidl, Gabriele
Negative distance kernels $K(x,y) := - \|x-y\|$ were used in the definition of maximum mean discrepancies (MMDs) in statistics and lead to favorable numerical results in various applications. In particular, so-called slicing techniques for handling high-dimensional kernel summations profit from the simple parameter-free structure of the distance kernel. However, due to its non-smoothness in $x=y$, most of the classical theoretical results, e.g. on Wasserstein gradient flows of the corresponding MMD functional do not longer hold true. In this paper, we propose a new kernel which keeps the favorable properties of the negative distance kernel as being conditionally positive definite of order one with a nearly linear increase towards infinity and a simple slicing structure, but is Lipschitz differentiable now. Our construction is based on a simple 1D smoothing procedure of the absolute value function followed by a Riemann-Liouville fractional integral transform. Numerical results demonstrate that the new kernel performs similarly well as the negative distance kernel in gradient descent methods, but now with theoretical guarantees.
Fast Summation of Radial Kernels via QMC Slicing
Hertrich, Johannes, Jahn, Tim, Quellmalz, Michael
The fast computation of large kernel sums is a challenging task, which arises as a subproblem in any kernel method. We approach the problem by slicing, which relies on random projections to one-dimensional subspaces and fast Fourier summation. We prove bounds for the slicing error and propose a quasi-Monte Carlo (QMC) approach for selecting the projections based on spherical quadrature rules. Numerical examples demonstrate that our QMC-slicing approach significantly outperforms existing methods like (QMC-)random Fourier features, orthogonal Fourier features or non-QMC slicing on standard test datasets.