Goto

Collaborating Authors

 Que, Qichao


Learning with Fredholm Kernels

Neural Information Processing Systems

In this paper we propose a framework for supervised and semi-supervised learning based on reformulating the learning problem as a regularized Fredholm integral equation. Our approach fits naturally into the kernel framework and can be interpreted as constructing new data-dependent kernels, which we call Fredholm kernels. We proceed to discuss the noise assumption" for semi-supervised learning and provide evidence evidence both theoretical and experimental that Fredholm kernels can effectively utilize unlabeled data under the noise assumption. We demonstrate that methods based on Fredholm learning show very competitive performance in the standard semi-supervised learning setting."


Revisiting Kernelized Locality-Sensitive Hashing for Improved Large-Scale Image Retrieval

arXiv.org Machine Learning

We present a simple but powerful reinterpretation of kernelized locality-sensitive hashing (KLSH), a general and popular method developed in the vision community for performing approximate nearest-neighbor searches in an arbitrary reproducing kernel Hilbert space (RKHS). Our new perspective is based on viewing the steps of the KLSH algorithm in an appropriately projected space, and has several key theoretical and practical benefits. First, it eliminates the problematic conceptual difficulties that are present in the existing motivation of KLSH. Second, it yields the first formal retrieval performance bounds for KLSH. Third, our analysis reveals two techniques for boosting the empirical performance of KLSH. We evaluate these extensions on several large-scale benchmark image retrieval data sets, and show that our analysis leads to improved recall performance of at least 12%, and sometimes much higher, over the standard KLSH method.


Inverse Density as an Inverse Problem: the Fredholm Equation Approach

Neural Information Processing Systems

We address the problem of estimating the ratio $\frac{q}{p}$ where $p$ is a density function and $q$ is another density, or, more generally an arbitrary function. Knowing or approximating this ratio is needed in various problems of inference and integration, in particular, when one needs to average a function with respect to one probability distribution, given a sample from another. It is often referred as {\it importance sampling} in statistical inference and is also closely related to the problem of {\it covariate shift} in transfer learning as well as to various MCMC methods. Our approach is based on reformulating the problem of estimating the ratio as an inverse problem in terms of an integral operator corresponding to a kernel, and thus reducing it to an integral equation, known as the Fredholm problem of the first kind. This formulation, combined with the techniques of regularization and kernel methods, leads to a principled kernel-based framework for constructing algorithms and for analyzing them theoretically. The resulting family of algorithms (FIRE, for Fredholm Inverse Regularized Estimator) is flexible, simple and easy to implement. We provide detailed theoretical analysis including concentration bounds and convergence rates for the Gaussian kernel for densities defined on $\R^d$ and smooth $d$-dimensional sub-manifolds of the Euclidean space. Model selection for unsupervised or semi-supervised inference is generally a difficult problem. Interestingly, it turns out that in the density ratio estimation setting, when samples from both distributions are available, there are simple completely unsupervised methods for choosing parameters. We call this model selection mechanism CD-CV for Cross-Density Cross-Validation. Finally, we show encouraging experimental results including applications to classification within the covariate shift framework.


Inverse Density as an Inverse Problem: The Fredholm Equation Approach

arXiv.org Machine Learning

In this paper we address the problem of estimating the ratio $\frac{q}{p}$ where $p$ is a density function and $q$ is another density, or, more generally an arbitrary function. Knowing or approximating this ratio is needed in various problems of inference and integration, in particular, when one needs to average a function with respect to one probability distribution, given a sample from another. It is often referred as {\it importance sampling} in statistical inference and is also closely related to the problem of {\it covariate shift} in transfer learning as well as to various MCMC methods. It may also be useful for separating the underlying geometry of a space, say a manifold, from the density function defined on it. Our approach is based on reformulating the problem of estimating $\frac{q}{p}$ as an inverse problem in terms of an integral operator corresponding to a kernel, and thus reducing it to an integral equation, known as the Fredholm problem of the first kind. This formulation, combined with the techniques of regularization and kernel methods, leads to a principled kernel-based framework for constructing algorithms and for analyzing them theoretically. The resulting family of algorithms (FIRE, for Fredholm Inverse Regularized Estimator) is flexible, simple and easy to implement. We provide detailed theoretical analysis including concentration bounds and convergence rates for the Gaussian kernel in the case of densities defined on $\R^d$, compact domains in $\R^d$ and smooth $d$-dimensional sub-manifolds of the Euclidean space. We also show experimental results including applications to classification and semi-supervised learning within the covariate shift framework and demonstrate some encouraging experimental comparisons. We also show how the parameters of our algorithms can be chosen in a completely unsupervised manner.