Goto

Collaborating Authors

 Quan, Shijie


Ads Recommendation in a Collapsed and Entangled World

arXiv.org Artificial Intelligence

We present Tencent's ads recommendation system and examine the challenges and practices of learning appropriate recommendation representations. Our study begins by showcasing our approaches to preserving prior knowledge when encoding features of diverse types into embedding representations. We specifically address sequence features, numeric features, and pre-trained embedding features. Subsequently, we delve into two crucial challenges related to feature representation: the dimensional collapse of embeddings and the interest entanglement across different tasks or scenarios. We propose several practical approaches to address these challenges that result in robust and disentangled recommendation representations. We then explore several training techniques to facilitate model optimization, reduce bias, and enhance exploration. Additionally, we introduce three analysis tools that enable us to study feature correlation, dimensional collapse, and interest entanglement. This work builds upon the continuous efforts of Tencent's ads recommendation team over the past decade. It summarizes general design principles and presents a series of readily applicable solutions and analysis tools. The reported performance is based on our online advertising platform, which handles hundreds of billions of requests daily and serves millions of ads to billions of users.


STEM: Unleashing the Power of Embeddings for Multi-task Recommendation

arXiv.org Artificial Intelligence

Multi-task learning (MTL) has gained significant popularity in recommender systems as it enables simultaneous optimization of multiple objectives. A key challenge in MTL is negative transfer, but existing studies explored negative transfer on all samples, overlooking the inherent complexities within them. We split the samples according to the relative amount of positive feedback among tasks. Surprisingly, negative transfer still occurs in existing MTL methods on samples that receive comparable feedback across tasks. Existing work commonly employs a shared-embedding paradigm, limiting the ability of modeling diverse user preferences on different tasks. In this paper, we introduce a novel Shared and Task-specific EMbeddings (STEM) paradigm that aims to incorporate both shared and task-specific embeddings to effectively capture task-specific user preferences. Under this paradigm, we propose a simple model STEM-Net, which is equipped with an All Forward Task-specific Backward gating network to facilitate the learning of task-specific embeddings and direct knowledge transfer across tasks. Remarkably, STEM-Net demonstrates exceptional performance on comparable samples, achieving positive transfer. Comprehensive evaluation on three public MTL recommendation datasets demonstrates that STEM-Net outperforms state-of-the-art models by a substantial margin. Our code is released at https://github.com/LiangcaiSu/STEM.