Goto

Collaborating Authors

 Quan, Chengbin


LLaMA-Excitor: General Instruction Tuning via Indirect Feature Interaction

arXiv.org Artificial Intelligence

Existing methods to fine-tune LLMs, like Adapter, Prefix-tuning, and LoRA, which introduce extra modules or additional input sequences to inject new skills or knowledge, may compromise the innate abilities of LLMs. In this paper, we propose LLaMA-Excitor, a lightweight method that stimulates the LLMs' potential to better follow instructions by gradually paying more attention to worthwhile information. Specifically, the LLaMA-Excitor does not directly change the intermediate hidden state during the self-attention calculation of the transformer structure. We designed the Excitor block as a bypass module for the similarity score computation in LLMs' self-attention to reconstruct keys and change the importance of values by learnable prompts. LLaMA-Excitor ensures a self-adaptive allocation of additional attention to input instructions, thus effectively preserving LLMs' pre-trained knowledge when fine-tuning LLMs on low-quality instruction-following datasets. Furthermore, we unify the modeling of multi-modal tuning and language-only tuning, extending LLaMA-Excitor to a powerful visual instruction follower without the need for complex multi-modal alignment. Our proposed approach is evaluated in language-only and multi-modal tuning experimental scenarios. Notably, LLaMA-Excitor is the only method that maintains basic capabilities while achieving a significant improvement (+6%) on the MMLU benchmark. In the visual instruction tuning, we achieve a new state-of-the-art image captioning performance of 157.5 CIDEr on MSCOCO, and a comparable performance (88.39%) on ScienceQA to cutting-edge models with more parameters and extensive vision-language pertaining.


Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Anthropic Prior Knowledge

arXiv.org Artificial Intelligence

Teeth localization, segmentation, and labeling in 2D images have great potential in modern dentistry to enhance dental diagnostics, treatment planning, and population-based studies on oral health. However, general instance segmentation frameworks are incompetent due to 1) the subtle differences between some teeth' shapes (e.g., maxillary first premolar and second premolar), 2) the teeth's position and shape variation across subjects, and 3) the presence of abnormalities in the dentition (e.g., caries and edentulism). To address these problems, we propose a ViT-based framework named TeethSEG, which consists of stacked Multi-Scale Aggregation (MSA) blocks and an Anthropic Prior Knowledge (APK) layer. Specifically, to compose the two modules, we design 1) a unique permutation-based upscaler to ensure high efficiency while establishing clear segmentation boundaries with 2) multi-head self/cross-gating layers to emphasize particular semantics meanwhile maintaining the divergence between token embeddings. Besides, we collect 3) the first open-sourced intraoral image dataset IO150K, which comprises over 150k intraoral photos, and all photos are annotated by orthodontists using a human-machine hybrid algorithm. Experiments on IO150K demonstrate that our TeethSEG outperforms the state-of-the-art segmentation models on dental image segmentation.