Goto

Collaborating Authors

 Quach, Maurice


Bosch Street Dataset: A Multi-Modal Dataset with Imaging Radar for Automated Driving

arXiv.org Artificial Intelligence

This paper introduces the Bosch street dataset (BSD), a novel multi-modal large-scale dataset aimed at promoting highly automated driving (HAD) and advanced driver-assistance systems (ADAS) research. Unlike existing datasets, BSD offers a unique integration of high-resolution imaging radar, lidar, and camera sensors, providing unprecedented 360-degree coverage to bridge the current gap in high-resolution radar data availability. Spanning urban, rural, and highway environments, BSD enables detailed exploration into radar-based object detection and sensor fusion techniques. The dataset is aimed at facilitating academic and research collaborations between Bosch and current and future partners. This aims to foster joint efforts in developing cutting-edge HAD and ADAS technologies. The paper describes the dataset's key attributes, including its scalability, radar resolution, and labeling methodology. Key offerings also include initial benchmarks for sensor modalities and a development kit tailored for extensive data analysis and performance evaluation, underscoring our commitment to contributing valuable resources to the HAD and ADAS research community.


Improved Multi-Scale Grid Rendering of Point Clouds for Radar Object Detection Networks

arXiv.org Artificial Intelligence

Architectures that first convert point clouds to a grid representation and then apply convolutional neural networks achieve good performance for radar-based object detection. However, the transfer from irregular point cloud data to a dense grid structure is often associated with a loss of information, due to the discretization and aggregation of points. In this paper, we propose a novel architecture, multi-scale KPPillarsBEV, that aims to mitigate the negative effects of grid rendering. Specifically, we propose a novel grid rendering method, KPBEV, which leverages the descriptive power of kernel point convolutions to improve the encoding of local point cloud contexts during grid rendering. In addition, we propose a general multi-scale grid rendering formulation to incorporate multi-scale feature maps into convolutional backbones of detection networks with arbitrary grid rendering methods. We perform extensive experiments on the nuScenes dataset and evaluate the methods in terms of detection performance and computational complexity. The proposed multi-scale KPPillarsBEV architecture outperforms the baseline by 5.37% and the previous state of the art by 2.88% in Car AP4.0 (average precision for a matching threshold of 4 meters) on the nuScenes validation set. Moreover, the proposed single-scale KPBEV grid rendering improves the Car AP4.0 by 2.90% over the baseline while maintaining the same inference speed.


Exploiting Sparsity in Automotive Radar Object Detection Networks

arXiv.org Artificial Intelligence

Having precise perception of the environment is crucial for ensuring the secure and reliable functioning of autonomous driving systems. Radar object detection networks are one fundamental part of such systems. CNN-based object detectors showed good performance in this context, but they require large compute resources. This paper investigates sparse convolutional object detection networks, which combine powerful grid-based detection with low compute resources. We investigate radar specific challenges and propose sparse kernel point pillars (SKPP) and dual voxel point convolutions (DVPC) as remedies for the grid rendering and sparse backbone architectures. We evaluate our SKPP-DPVCN architecture on nuScenes, which outperforms the baseline by 5.89% and the previous state of the art by 4.19% in Car AP4.0. Moreover, SKPP-DPVCN reduces the average scale error (ASE) by 21.41% over the baseline.


Improved Deep Point Cloud Geometry Compression

arXiv.org Machine Learning

Point clouds have been recognized as a crucial data structure for 3D content and are essential in a number of applications such as virtual and mixed reality, autonomous driving, cultural heritage, etc. In this paper, we propose a set of contributions to improve deep point cloud compression, i.e.: using a scale hyperprior model for entropy coding; employing deeper transforms; a different balancing weight in the focal loss; optimal thresholding for decoding; and sequential model training. In addition, we present an extensive ablation study on the impact of each of these factors, in order to provide a better understanding about why they improve RD performance. An optimal combination of the proposed improvements achieves BD-PSNR gains over G-PCC trisoup and octree of 5.50 (6.48) dB and 6.84 (5.95) dB, respectively, when using the point-to-point (point-to-plane) metric. Code is available at https://github.com/mauriceqch/pcc_geo_cnn_v2 .


Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression

arXiv.org Machine Learning

Efficient point cloud compression is fundamental to enable the deployment of virtual and mixed reality applications, since the number of points to code can range in the order of millions. In this paper, we present a novel data-driven geometry compression method for static point clouds based on learned convolutional transforms and uniform quantization. We perform joint optimization of both rate and distortion using a trade-off parameter. In addition, we cast the decoding process as a binary classification of the point cloud occupancy map. Our method outperforms the MPEG reference solution in terms of rate-distortion on the Microsoft Voxelized Upper Bodies dataset with 51.5% BDBR savings on average. Moreover, while octree-based methods face exponential diminution of the number of points at low bitrates, our method still produces high resolution outputs even at low bitrates.