Goto

Collaborating Authors

 Qu, Yansong


Evolving High-Quality Rendering and Reconstruction in a Unified Framework with Contribution-Adaptive Regularization

arXiv.org Artificial Intelligence

Representing 3D scenes from multiview images is a core challenge in computer vision and graphics, which requires both precise rendering and accurate reconstruction. Recently, 3D Gaussian Splatting (3DGS) has garnered significant attention for its high-quality rendering and fast inference speed. Yet, due to the unstructured and irregular nature of Gaussian point clouds, ensuring accurate geometry reconstruction remains difficult. Existing methods primarily focus on geometry regularization, with common approaches including primitive-based and dual-model frameworks. However, the former suffers from inherent conflicts between rendering and reconstruction, while the latter is computationally and storage-intensive. To address these challenges, we propose CarGS, a unified model leveraging Contribution-adaptive regularization to achieve simultaneous, high-quality rendering and surface reconstruction. The essence of our framework is learning adaptive contribution for Gaussian primitives by squeezing the knowledge from geometry regularization into a compact MLP. Additionally, we introduce a geometry-guided densification strategy with clues from both normals and Signed Distance Fields (SDF) to improve the capability of capturing high-frequency details. Our design improves the mutual learning of the two tasks, meanwhile its unified structure does not require separate models as in dual-model based approaches, guaranteeing efficiency. Extensive experiments demonstrate the ability to achieve state-of-the-art (SOTA) results in both rendering fidelity and reconstruction accuracy while maintaining real-time speed and minimal storage size.


CurricuVLM: Towards Safe Autonomous Driving via Personalized Safety-Critical Curriculum Learning with Vision-Language Models

arXiv.org Artificial Intelligence

Ensuring safety in autonomous driving systems remains a critical challenge, particularly in handling rare but potentially catastrophic safety-critical scenarios. While existing research has explored generating safety-critical scenarios for autonomous vehicle (AV) testing, there is limited work on effectively incorporating these scenarios into policy learning to enhance safety. Furthermore, developing training curricula that adapt to an AV's evolving behavioral patterns and performance bottlenecks remains largely unexplored. To address these challenges, we propose CurricuVLM, a novel framework that leverages Vision-Language Models (VLMs) to enable personalized curriculum learning for autonomous driving agents. Our approach uniquely exploits VLMs' multimodal understanding capabilities to analyze agent behavior, identify performance weaknesses, and dynamically generate tailored training scenarios for curriculum adaptation. Through comprehensive analysis of unsafe driving situations with narrative descriptions, CurricuVLM performs in-depth reasoning to evaluate the AV's capabilities and identify critical behavioral patterns. The framework then synthesizes customized training scenarios targeting these identified limitations, enabling effective and personalized curriculum learning. Extensive experiments on the Waymo Open Motion Dataset show that CurricuVLM outperforms state-of-the-art baselines across both regular and safety-critical scenarios, achieving superior performance in terms of navigation success, driving efficiency, and safety metrics. Further analysis reveals that CurricuVLM serves as a general approach that can be integrated with various RL algorithms to enhance autonomous driving systems. The code and demo video are available at: https://zihaosheng.github.io/CurricuVLM/.


VLM-RL: A Unified Vision Language Models and Reinforcement Learning Framework for Safe Autonomous Driving

arXiv.org Artificial Intelligence

In recent years, reinforcement learning (RL)-based methods for learning driving policies have gained increasing attention in the autonomous driving community and have achieved remarkable progress in various driving scenarios. However, traditional RL approaches rely on manually engineered rewards, which require extensive human effort and often lack generalizability. To address these limitations, we propose \textbf{VLM-RL}, a unified framework that integrates pre-trained Vision-Language Models (VLMs) with RL to generate reward signals using image observation and natural language goals. The core of VLM-RL is the contrasting language goal (CLG)-as-reward paradigm, which uses positive and negative language goals to generate semantic rewards. We further introduce a hierarchical reward synthesis approach that combines CLG-based semantic rewards with vehicle state information, improving reward stability and offering a more comprehensive reward signal. Additionally, a batch-processing technique is employed to optimize computational efficiency during training. Extensive experiments in the CARLA simulator demonstrate that VLM-RL outperforms state-of-the-art baselines, achieving a 10.5\% reduction in collision rate, a 104.6\% increase in route completion rate, and robust generalization to unseen driving scenarios. Furthermore, VLM-RL can seamlessly integrate almost any standard RL algorithms, potentially revolutionizing the existing RL paradigm that relies on manual reward engineering and enabling continuous performance improvements. The demo video and code can be accessed at: https://zilin-huang.github.io/VLM-RL-website.


Towards 3D Semantic Scene Completion for Autonomous Driving: A Meta-Learning Framework Empowered by Deformable Large-Kernel Attention and Mamba Model

arXiv.org Artificial Intelligence

Semantic scene completion (SSC) is essential for achieving comprehensive perception in autonomous driving systems. However, existing SSC methods often overlook the high deployment costs in real-world applications. Traditional architectures, such as 3D Convolutional Neural Networks (3D CNNs) and self-attention mechanisms, face challenges in efficiently capturing long-range dependencies within 3D voxel grids, limiting their effectiveness. To address these issues, we introduce MetaSSC, a novel meta-learning-based framework for SSC that leverages deformable convolution, large-kernel attention, and the Mamba (D-LKA-M) model. Our approach begins with a voxel-based semantic segmentation (SS) pretraining task, aimed at exploring the semantics and geometry of incomplete regions while acquiring transferable meta-knowledge. Using simulated cooperative perception datasets, we supervise the perception training of a single vehicle using aggregated sensor data from multiple nearby connected autonomous vehicles (CAVs), generating richer and more comprehensive labels. This meta-knowledge is then adapted to the target domain through a dual-phase training strategy that does not add extra model parameters, enabling efficient deployment. To further enhance the model's capability in capturing long-sequence relationships within 3D voxel grids, we integrate Mamba blocks with deformable convolution and large-kernel attention into the backbone network. Extensive experiments demonstrate that MetaSSC achieves state-of-the-art performance, significantly outperforming competing models while also reducing deployment costs.