Qu, Meng
Continuous Graph Neural Networks
Xhonneux, Louis-Pascal A. C., Qu, Meng, Tang, Jian
This paper builds the connection between graph neural networks and traditional dynamical systems. Existing graph neural networks essentially define a discrete dynamic on node representations with multiple graph convolution layers. We propose continuous graph neural networks (CGNN), which generalise existing graph neural networks into the continuous-time dynamic setting. The key idea is how to characterise the continuous dynamics of node representations, i.e. the derivatives of node representations w.r.t. time. Inspired by existing diffusion-based methods on graphs (e.g. PageRank and epidemic models on social networks), we define the derivatives as a combination of the current node representations, the representations of neighbors, and the initial values of the nodes. We propose and analyse different possible dynamics on graphs---including each dimension of node representations (a.k.a. the feature channel) change independently or interact with each other---both with theoretical justification. The proposed continuous graph neural networks are robust to over-smoothing and hence capture the long-range dependencies between nodes. Experimental results on the task of node classification prove the effectiveness of our proposed approach over competitive baselines.
GraphMix: Regularized Training of Graph Neural Networks for Semi-Supervised Learning
Verma, Vikas, Qu, Meng, Lamb, Alex, Bengio, Yoshua, Kannala, Juho, Tang, Jian
We present GraphMix, a regularization technique for Graph Neural Network based semi-supervised object classification, leveraging the recent advances in the regularization of classical deep neural networks. Specifically, we propose a unified approach in which we train a fully-connected network jointly with the graph neural network via parameter sharing, interpolation-based regularization, and self-predicted-targets. Our proposed method is architecture agnostic in the sense that it can be applied to any variant of graph neural networks which applies a parametric transformation to the features of the graph nodes. Despite its simplicity, with GraphMix we can consistently improve results and achieve or closely match state-of-the-art performance using even simpler architectures such as Graph Convolutional Networks, across three established graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as three newly proposed datasets : Cora-Full, Co-author-CS and Co-author-Physics.
Collaborative Policy Learning for Open Knowledge Graph Reasoning
Fu, Cong, Chen, Tong, Qu, Meng, Jin, Woojeong, Ren, Xiang
In recent years, there has been a surge of interests in interpretable graph reasoning methods. However, these models often suffer from limited performance when working on sparse and incomplete graphs, due to the lack of evidential paths that can reach target entities. Here we study open knowledge graph reasoning---a task that aims to reason for missing facts over a graph augmented by a background text corpus. A key challenge of the task is to filter out "irrelevant" facts extracted from corpus, in order to maintain an effective search space during path inference. We propose a novel reinforcement learning framework to train two collaborative agents jointly, i.e., a multi-hop graph reasoner and a fact extractor. The fact extraction agent generates fact triples from corpora to enrich the graph on the fly; while the reasoning agent provides feedback to the fact extractor and guides it towards promoting facts that are helpful for the interpretable reasoning. Experiments on two public datasets demonstrate the effectiveness of the proposed approach. Source code and datasets used in this paper can be downloaded at https://github.com/shanzhenren/CPL
Weakly-supervised Knowledge Graph Alignment with Adversarial Learning
Qu, Meng, Tang, Jian, Bengio, Yoshua
This paper studies aligning knowledge graphs from different sources or languages. Most existing methods train supervised methods for the alignment, which usually require a large number of aligned knowledge triplets. However, such a large number of aligned knowledge triplets may not be available or are expensive to obtain in many domains. Therefore, in this paper we propose to study aligning knowledge graphs in fully-unsupervised or weakly-supervised fashion, i.e., without or with only a few aligned triplets. We propose an unsupervised framework to align the entity and relation embddings of different knowledge graphs with an adversarial learning framework. Moreover, a regularization term which maximizes the mutual information between the embeddings of different knowledge graphs is used to mitigate the problem of mode collapse when learning the alignment functions. Such a framework can be further seamlessly integrated with existing supervised methods by utilizing a limited number of aligned triples as guidance. Experimental results on multiple datasets prove the effectiveness of our proposed approach in both the unsupervised and the weakly-supervised settings.
Probabilistic Logic Neural Networks for Reasoning
Qu, Meng, Tang, Jian
Knowledge graph reasoning, which aims at predicting the missing facts through reasoning with the observed facts, is critical to many applications. Such a problem has been widely explored by traditional logic rule-based approaches and recent knowledge graph embedding methods. A principled logic rule-based approach is the Markov Logic Network (MLN), which is able to leverage domain knowledge with first-order logic and meanwhile handle their uncertainty. However, the inference of MLNs is usually very difficult due to the complicated graph structures. Different from MLNs, knowledge graph embedding methods (e.g. TransE, DistMult) learn effective entity and relation embeddings for reasoning, which are much more effective and efficient. However, they are unable to leverage domain knowledge. In this paper, we propose the probabilistic Logic Neural Network (pLogicNet), which combines the advantages of both methods. A pLogicNet defines the joint distribution of all possible triplets by using a Markov logic network with first-order logic, which can be efficiently optimized with the variational EM algorithm. In the E-step, a knowledge graph embedding model is used for inferring the missing triplets, while in the M-step, the weights of logic rules are updated based on both the observed and predicted triplets. Experiments on multiple knowledge graphs prove the effectiveness of pLogicNet over many competitive baselines.
vGraph: A Generative Model for Joint Community Detection and Node Representation Learning
Sun, Fan-Yun, Qu, Meng, Hoffmann, Jordan, Huang, Chin-Wei, Tang, Jian
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
GMNN: Graph Markov Neural Networks
Qu, Meng, Bengio, Yoshua, Tang, Jian
This paper studies semi-supervised object classification in relational data, which is a fundamental problem in relational data modeling. The problem has been extensively studied in the literature of both statistical relational learning (e.g. relational Markov networks) and graph neural networks (e.g. graph convolutional networks). Statistical relational learning methods can effectively model the dependency of object labels through conditional random fields for collective classification, whereas graph neural networks learn effective object representations for classification through end-to-end training. In this paper, we propose the Graph Markov Neural Network (GMNN) that combines the advantages of both worlds. A GMNN models the joint distribution of object labels with a conditional random field, which can be effectively trained with the variational EM algorithm. In the E-step, one graph neural network learns effective object representations for approximating the posterior distributions of object labels. In the M-step, another graph neural network is used to model the local label dependency. Experiments on object classification, link classification, and unsupervised node representation learning show that GMNN achieves state-of-the-art results.
GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding
Zhu, Zhaocheng, Xu, Shizhen, Qu, Meng, Tang, Jian
Learning continuous representations of nodes is attracting growing interest in both academia and industry recently, due to their simplicity and effectiveness in a variety of applications. Most of existing node embedding algorithms and systems are capable of processing networks with hundreds of thousands or a few millions of nodes. However, how to scale them to networks that have tens of millions or even hundreds of millions of nodes remains a challenging problem. In this paper, we propose GraphVite, a high-performance CPU-GPU hybrid system for training node embeddings, by co-optimizing the algorithm and the system. On the CPU end, augmented edge samples are parallelly generated by random walks in an online fashion on the network, and serve as the training data. On the GPU end, a novel parallel negative sampling is proposed to leverage multiple GPUs to train node embeddings simultaneously, without much data transfer and synchronization. Moreover, an efficient collaboration strategy is proposed to further reduce the synchronization cost between CPUs and GPUs. Experiments on multiple real-world networks show that GraphVite is super efficient. It takes only about one minute for a network with 1 million nodes and 5 million edges on a single machine with 4 GPUs, and takes around 20 hours for a network with 66 million nodes and 1.8 billion edges. Compared to the current fastest system, GraphVite is about 50 times faster without any sacrifice on performance.
An Attention-based Collaboration Framework for Multi-View Network Representation Learning
Qu, Meng, Tang, Jian, Shang, Jingbo, Ren, Xiang, Zhang, Ming, Han, Jiawei
Learning distributed node representations in networks has been attracting increasing attention recently due to its effectiveness in a variety of applications. Existing approaches usually study networks with a single type of proximity between nodes, which defines a single view of a network. However, in reality there usually exists multiple types of proximities between nodes, yielding networks with multiple views. This paper studies learning node representations for networks with multiple views, which aims to infer robust node representations across different views. We propose a multi-view representation learning approach, which promotes the collaboration of different views and lets them vote for the robust representations. During the voting process, an attention mechanism is introduced, which enables each node to focus on the most informative views. Experimental results on real-world networks show that the proposed approach outperforms existing state-of-the-art approaches for network representation learning with a single view and other competitive approaches with multiple views.
Identity-sensitive Word Embedding through Heterogeneous Networks
Tang, Jian, Qu, Meng, Mei, Qiaozhu
Most existing word embedding approaches do not distinguish the same words in different contexts, therefore ignoring their contextual meanings. As a result, the learned embeddings of these words are usually a mixture of multiple meanings. In this paper, we acknowledge multiple identities of the same word in different contexts and learn the \textbf{identity-sensitive} word embeddings. Based on an identity-labeled text corpora, a heterogeneous network of words and word identities is constructed to model different-levels of word co-occurrences. The heterogeneous network is further embedded into a low-dimensional space through a principled network embedding approach, through which we are able to obtain the embeddings of words and the embeddings of word identities. We study three different types of word identities including topics, sentiments and categories. Experimental results on real-world data sets show that the identity-sensitive word embeddings learned by our approach indeed capture different meanings of words and outperforms competitive methods on tasks including text classification and word similarity computation.