Goto

Collaborating Authors

 Qu, Guannan


A Scalable Network-Aware Multi-Agent Reinforcement Learning Framework for Decentralized Inverter-based Voltage Control

arXiv.org Artificial Intelligence

This paper addresses the challenges associated with decentralized voltage control in power grids due to an increase in distributed generations (DGs). Traditional model-based voltage control methods struggle with the rapid energy fluctuations and uncertainties of these DGs. While multi-agent reinforcement learning (MARL) has shown potential for decentralized secondary control, scalability issues arise when dealing with a large number of DGs. This problem lies in the dominant centralized training and decentralized execution (CTDE) framework, where the critics take global observations and actions. To overcome these challenges, we propose a scalable network-aware (SNA) framework that leverages network structure to truncate the input to the critic's Q-function, thereby improving scalability and reducing communication costs during training. Further, the SNA framework is theoretically grounded with provable approximation guarantee, and it can seamlessly integrate with multiple multi-agent actor-critic algorithms. The proposed SNA framework is successfully demonstrated in a system with 114 DGs, providing a promising solution for decentralized voltage control in increasingly complex power grid systems.


Global Convergence of Localized Policy Iteration in Networked Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

We study a multi-agent reinforcement learning (MARL) problem where the agents interact over a given network. The goal of the agents is to cooperatively maximize the average of their entropy-regularized long-term rewards. To overcome the curse of dimensionality and to reduce communication, we propose a Localized Policy Iteration (LPI) algorithm that provably learns a near-globally-optimal policy using only local information. In particular, we show that, despite restricting each agent's attention to only its $\kappa$-hop neighborhood, the agents are able to learn a policy with an optimality gap that decays polynomially in $\kappa$. In addition, we show the finite-sample convergence of LPI to the global optimal policy, which explicitly captures the trade-off between optimality and computational complexity in choosing $\kappa$. Numerical simulations demonstrate the effectiveness of LPI.


KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed Stability in Nonlinear Dynamical Systems

arXiv.org Machine Learning

Learning a dynamical system requires stabilizing the unknown dynamics to avoid state blow-ups. However, current reinforcement learning (RL) methods lack stabilization guarantees, which limits their applicability for the control of safety-critical systems. We propose a model-based RL framework with formal stability guarantees, Krasovskii Constrained RL (KCRL), that adopts Krasovskii's family of Lyapunov functions as a stability constraint. The proposed method learns the system dynamics up to a confidence interval using feature representation, e.g. Random Fourier Features. It then solves a constrained policy optimization problem with a stability constraint based on Krasovskii's method using a primal-dual approach to recover a stabilizing policy. We show that KCRL is guaranteed to learn a stabilizing policy in a finite number of interactions with the underlying unknown system. We also derive the sample complexity upper bound for stabilization of unknown nonlinear dynamical systems via the KCRL framework.


Equipping Black-Box Policies with Model-Based Advice for Stable Nonlinear Control

arXiv.org Machine Learning

Machine-learned black-box policies are ubiquitous for nonlinear control problems. Meanwhile, crude model information is often available for these problems from, e.g., linear approximations of nonlinear dynamics. We study the problem of equipping a black-box control policy with model-based advice for nonlinear control on a single trajectory. We first show a general negative result that a naive convex combination of a black-box policy and a linear model-based policy can lead to instability, even if the two policies are both stabilizing. We then propose an adaptive $\lambda$-confident policy, with a coefficient $\lambda$ indicating the confidence in a black-box policy, and prove its stability. With bounded nonlinearity, in addition, we show that the adaptive $\lambda$-confident policy achieves a bounded competitive ratio when a black-box policy is near-optimal. Finally, we propose an online learning approach to implement the adaptive $\lambda$-confident policy and verify its efficacy in case studies about the CartPole problem and a real-world electric vehicle (EV) charging problem with data bias due to COVID-19.


Decentralized Graph-Based Multi-Agent Reinforcement Learning Using Reward Machines

arXiv.org Artificial Intelligence

In multi-agent reinforcement learning (MARL), it is challenging for a collection of agents to learn complex temporally extended tasks. The difficulties lie in computational complexity and how to learn the high-level ideas behind reward functions. We study the graph-based Markov Decision Process (MDP) where the dynamics of neighboring agents are coupled. We use a reward machine (RM) to encode each agent's task and expose reward function internal structures. RM has the capacity to describe high-level knowledge and encode non-Markovian reward functions. We propose a decentralized learning algorithm to tackle computational complexity, called decentralized graph-based reinforcement learning using reward machines (DGRM), that equips each agent with a localized policy, allowing agents to make decisions independently, based on the information available to the agents. DGRM uses the actor-critic structure, and we introduce the tabular Q-function for discrete state problems. We show that the dependency of Q-function on other agents decreases exponentially as the distance between them increases. Furthermore, the complexity of DGRM is related to the local information size of the largest $\kappa$-hop neighborhood, and DGRM can find an $O(\rho^{\kappa+1})$-approximation of a stationary point of the objective function. To further improve efficiency, we also propose the deep DGRM algorithm, using deep neural networks to approximate the Q-function and policy function to solve large-scale or continuous state problems. The effectiveness of the proposed DGRM algorithm is evaluated by two case studies, UAV package delivery and COVID-19 pandemic mitigation. Experimental results show that local information is sufficient for DGRM and agents can accomplish complex tasks with the help of RM. DGRM improves the global accumulated reward by 119% compared to the baseline in the case of COVID-19 pandemic mitigation.


Reinforcement Learning for Decision-Making and Control in Power Systems: Tutorial, Review, and Vision

arXiv.org Artificial Intelligence

With large-scale integration of renewable generation and ubiquitous distributed energy resources (DERs), modern power systems confront a series of new challenges in operation and control, such as growing complexity, increasing uncertainty, and aggravating volatility. While the upside is that more and more data are available owing to the widely-deployed smart meters, smart sensors, and upgraded communication networks. As a result, data-driven control techniques, especially reinforcement learning (RL), have attracted surging attention in recent years. In this paper, we focus on RL and aim to provide a tutorial on various RL techniques and how they can be applied to the decision-making and control in power systems. In particular, we select three key applications, including frequency regulation, voltage control, and energy management, for illustration, and present the typical ways to model and tackle them with RL methods. We conclude by emphasizing two critical issues in the application of RL, i.e., safety and scalability. Several potential future directions are discussed as well.


Multi-Agent Reinforcement Learning in Time-varying Networked Systems

arXiv.org Machine Learning

In comparison to single-agent reinforcement learning (RL), MARL poses many challenges, chief of which is scalability [49]. Even if each agent's local state/action spaces are small, the size of the global state/action space can be large, potentially exponentially large in the number of agents, which renders many RL algorithms such as -learning not applicable. A promising approach for addressing the scalability challenge that has received attention in recent years is to exploit application-specific structures, e.g., [16, 32, 35]. A particularly important example of such a structure is a networked structure, e.g., applications in multi-agent networked systems such as social networks [6, 24], communication networks [44, 52], queueing networks [31], and smart transportation networks [51]. In these networked systems, it is often possible to exploit static, local dependency structures [1, 14, 15, 29], e.g., the fact that agents only interact with a fixed set of neighboring agents throughout the game. This sort of dependency structure often leads to scalable, distributed algorithms for optimization and control [1, 14, 29], and has proven effective for designing scalable and distributed MARL algorithms, e.g.


Learning Optimal Power Flow: Worst-Case Guarantees for Neural Networks

arXiv.org Artificial Intelligence

This paper introduces for the first time a framework to obtain provable worst-case guarantees for neural network performance, using learning for optimal power flow (OPF) problems as a guiding example. Neural networks have the potential to substantially reduce the computing time of OPF solutions. However, the lack of guarantees for their worst-case performance remains a major barrier for their adoption in practice. This work aims to remove this barrier. We formulate mixed-integer linear programs to obtain worst-case guarantees for neural network predictions related to (i) maximum constraint violations, (ii) maximum distances between predicted and optimal decision variables, and (iii) maximum sub-optimality. We demonstrate our methods on a range of PGLib-OPF networks up to 300 buses. We show that the worst-case guarantees can be up to one order of magnitude larger than the empirical lower bounds calculated with conventional methods. More importantly, we show that the worst-case predictions appear at the boundaries of the training input domain, and we demonstrate how we can systematically reduce the worst-case guarantees by training on a larger input domain than the domain they are evaluated on.


Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward

arXiv.org Artificial Intelligence

It has long been recognized that multi-agent reinforcement learning (MARL) faces significant scalability issues due to the fact that the size of the state and action spaces are exponentially large in the number of agents. In this paper, we identify a rich class of networked MARL problems where the model exhibits a local dependence structure that allows it to be solved in a scalable manner. Specifically, we propose a Scalable Actor-Critic (SAC) method that can learn a near optimal localized policy for optimizing the average reward with complexity scaling with the state-action space size of local neighborhoods, as opposed to the entire network. Our result centers around identifying and exploiting an exponential decay property that ensures the effect of agents on each other decays exponentially fast in their graph distance.