Qiu, Yunzhi
Taiyi: A Bilingual Fine-Tuned Large Language Model for Diverse Biomedical Tasks
Luo, Ling, Ning, Jinzhong, Zhao, Yingwen, Wang, Zhijun, Ding, Zeyuan, Chen, Peng, Fu, Weiru, Han, Qinyu, Xu, Guangtao, Qiu, Yunzhi, Pan, Dinghao, Li, Jiru, Li, Hao, Feng, Wenduo, Tu, Senbo, Liu, Yuqi, Yang, Zhihao, Wang, Jian, Sun, Yuanyuan, Lin, Hongfei
Objective: Most existing fine-tuned biomedical large language models (LLMs) focus on enhancing performance in monolingual biomedical question answering and conversation tasks. To investigate the effectiveness of the fine-tuned LLMs on diverse biomedical NLP tasks in different languages, We present Taiyi, a bilingual fine-tuned LLM for diverse biomedical tasks. Materials and Methods: We first curated a comprehensive collection of 140 existing biomedical text mining datasets (102 English and 38 Chinese datasets) across over 10 task types. Subsequently, a two-stage strategy is proposed for supervised fine-tuning to optimize the model performance across varied tasks. Results: Experimental results on 13 test sets covering named entity recognition, relation extraction, text classification, question answering tasks demonstrate that Taiyi achieves superior performance compared to general LLMs. The case study involving additional biomedical NLP tasks further shows Taiyi's considerable potential for bilingual biomedical multi-tasking. Conclusion: Leveraging rich high-quality biomedical corpora and developing effective fine-tuning strategies can significantly improve the performance of LLMs within the biomedical domain. Taiyi shows the bilingual multi-tasking capability through supervised fine-tuning. However, those tasks such as information extraction that are not generation tasks in nature remain challenging for LLM-based generative approaches, and they still underperform the conventional discriminative approaches of smaller language models.
KESDT: knowledge enhanced shallow and deep Transformer for detecting adverse drug reactions
Qiu, Yunzhi, Zhang, Xiaokun, Wang, Weiwei, Zhang, Tongxuan, Xu, Bo, Lin, Hongfei
Adverse drug reaction (ADR) detection is an essential task in the medical field, as ADRs have a gravely detrimental impact on patients' health and the healthcare system. Due to a large number of people sharing information on social media platforms, an increasing number of efforts focus on social media data to carry out effective ADR detection. Despite having achieved impressive performance, the existing methods of ADR detection still suffer from three main challenges. Firstly, researchers have consistently ignored the interaction between domain keywords and other words in the sentence. Secondly, social media datasets suffer from the challenges of low annotated data. Thirdly, the issue of sample imbalance is commonly observed in social media datasets. To solve these challenges, we propose the Knowledge Enhanced Shallow and Deep Transformer(KESDT) model for ADR detection. Specifically, to cope with the first issue, we incorporate the domain keywords into the Transformer model through a shallow fusion manner, which enables the model to fully exploit the interactive relationships between domain keywords and other words in the sentence. To overcome the low annotated data, we integrate the synonym sets into the Transformer model through a deep fusion manner, which expands the size of the samples. To mitigate the impact of sample imbalance, we replace the standard cross entropy loss function with the focal loss function for effective model training. We conduct extensive experiments on three public datasets including TwiMed, Twitter, and CADEC. The proposed KESDT outperforms state-of-the-art baselines on F1 values, with relative improvements of 4.87%, 47.83%, and 5.73% respectively, which demonstrates the effectiveness of our proposed KESDT.