Goto

Collaborating Authors

 Qiu, Shuang


Online Preference Alignment for Language Models via Count-based Exploration

arXiv.org Artificial Intelligence

Reinforcement Learning from Human Feedback (RLHF) has shown great potential in fine-tuning Large Language Models (LLMs) to align with human preferences. Existing methods perform preference alignment from a fixed dataset, which can be limited in data coverage, and the resulting reward model is hard to generalize in out-of-distribution responses. Thus, online RLHF is more desirable to empower the LLM to explore outside the support of the initial dataset by iteratively collecting the prompt-response pairs. In this paper, we study the fundamental problem in online RLHF, i.e. \emph{how to explore} for LLM. We give a theoretical motivation in linear reward assumption to show that an optimistic reward with an upper confidence bound (UCB) term leads to a provably efficient RLHF policy. Then, we reformulate our objective to direct preference optimization with an exploration term, where the UCB-term can be converted to a count-based exploration bonus. We further propose a practical algorithm, named \emph{Count-based Online Preference Optimization (COPO)}, which leverages a simple coin-flip counting module to estimate the pseudo-count of a prompt-response pair in previously collected data. COPO encourages LLMs to balance exploration and preference optimization in an iterative manner, which enlarges the exploration space and the entire data coverage of iterative LLM policies. We conduct online RLHF experiments on Zephyr and Llama-3 models. The results on instruction-following and standard academic benchmarks show that COPO significantly increases performance.


Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning

arXiv.org Machine Learning

We study risk-sensitive reinforcement learning (RL), a crucial field due to its ability to enhance decision-making in scenarios where it is essential to manage uncertainty and minimize potential adverse outcomes. Particularly, our work focuses on applying the entropic risk measure to RL problems. While existing literature primarily investigates the online setting, there remains a large gap in understanding how to efficiently derive a near-optimal policy based on this risk measure using only a pre-collected dataset. We center on the linear Markov Decision Process (MDP) setting, a well-regarded theoretical framework that has yet to be examined from a risk-sensitive standpoint. In response, we introduce two provably sample-efficient algorithms. We begin by presenting a risk-sensitive pessimistic value iteration algorithm, offering a tight analysis by leveraging the structure of the risk-sensitive performance measure. To further improve the obtained bounds, we propose another pessimistic algorithm that utilizes variance information and reference-advantage decomposition, effectively improving both the dependence on the space dimension $d$ and the risk-sensitivity factor. To the best of our knowledge, we obtain the first provably efficient risk-sensitive offline RL algorithms.


Human-like object concept representations emerge naturally in multimodal large language models

arXiv.org Artificial Intelligence

The conceptualization and categorization of natural objects in the human mind have long intrigued cognitive scientists and neuroscientists, offering crucial insights into human perception and cognition. Recently, the rapid development of Large Language Models (LLMs) has raised the attractive question of whether these models can also develop human-like object representations through exposure to vast amounts of linguistic and multimodal data. In this study, we combined behavioral and neuroimaging analysis methods to uncover how the object concept representations in LLMs correlate with those of humans. By collecting large-scale datasets of 4.7 million triplet judgments from LLM and Multimodal LLM (MLLM), we were able to derive low-dimensional embeddings that capture the underlying similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were found to be highly stable and predictive, and exhibited semantic clustering akin to human mental representations. Interestingly, the interpretability of the dimensions underlying these embeddings suggests that LLM and MLLM have developed human-like conceptual representations of natural objects. Further analysis demonstrated strong alignment between the identified model embeddings and neural activity patterns in many functionally defined brain ROIs (e.g., EBA, PPA, RSC and FFA). This provides compelling evidence that the object representations in LLMs, while not identical to those in the human, share fundamental commonalities that reflect key schemas of human conceptual knowledge. This study advances our understanding of machine intelligence and informs the development of more human-like artificial cognitive systems.


Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment

arXiv.org Artificial Intelligence

We consider the problem of multi-objective alignment of foundation models with human preferences, which is a critical step towards helpful and harmless AI systems. However, it is generally costly and unstable to fine-tune large foundation models using reinforcement learning (RL), and the multi-dimensionality, heterogeneity, and conflicting nature of human preferences further complicate the alignment process. In this paper, we introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context and applies supervised fine-tuning for alignment. The salient features of RiC are simplicity and adaptivity, as it only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time. Inspired by the analytical solution of an abstracted convex optimization problem, our dynamic inference-time adjustment method approaches the Pareto-optimal solution for multiple objectives. Empirical evidence demonstrates the efficacy of our method in aligning both Large Language Models (LLMs) and diffusion models to accommodate diverse rewards with only around 10% GPU hours compared with multi-objective RL baseline.


ROPO: Robust Preference Optimization for Large Language Models

arXiv.org Artificial Intelligence

Preference alignment is pivotal for empowering large language models (LLMs) to generate helpful and harmless responses. However, the performance of preference alignment is highly sensitive to the prevalent noise in the preference data. Recent efforts for this problem either marginally alleviate the impact of noise without the ability to actually reduce its presence, or rely on costly teacher LLMs prone to reward misgeneralization. To address these challenges, we propose the RObust Preference Optimization (ROPO) framework, an iterative alignment approach that integrates noise-tolerance and filtering of noisy samples without the aid of external models. Specifically, ROPO iteratively solves a constrained optimization problem, where we dynamically assign a quality-aware weight for each sample and constrain the sum of the weights to the number of samples we intend to retain. For noise-tolerant training and effective noise identification, we derive a robust loss by suppressing the gradients of samples with high uncertainty. We demonstrate both empirically and theoretically that the derived loss is critical for distinguishing noisy samples from clean ones. Furthermore, inspired by our derived loss, we propose a robustness-guided rejection sampling technique to compensate for the potential important information in discarded queries. Experiments on three widely-used datasets with Mistral-7B and Llama-2-7B demonstrate that ROPO significantly outperforms existing preference alignment methods, with its superiority growing as the noise rate increases.


Arithmetic Control of LLMs for Diverse User Preferences: Directional Preference Alignment with Multi-Objective Rewards

arXiv.org Machine Learning

Fine-grained control over large language models (LLMs) remains a significant challenge, hindering their adaptability to diverse user needs. While Reinforcement Learning from Human Feedback (RLHF) shows promise in aligning LLMs, its reliance on scalar rewards often limits its ability to capture diverse user preferences in real-world applications. To address this limitation, we introduce the Directional Preference Alignment (DPA) framework. Unlike the scalar-reward RLHF, DPA incorporates multi-objective reward modeling to represent diverse preference profiles. Additionally, DPA models user preferences as directions (i.e., unit vectors) in the reward space to achieve user-dependent preference control. Our method involves training a multi-objective reward model and then fine-tuning the LLM with a preference-conditioned variant of Rejection Sampling Finetuning (RSF), an RLHF method adopted by Llama 2. This method enjoys a better performance trade-off across various reward objectives. In comparison with the scalar-reward RLHF, DPA offers users intuitive control over LLM generation: they can arithmetically specify their desired trade-offs (e.g., more helpfulness with less verbosity). We also validate the effectiveness of DPA with real-world alignment experiments on Mistral-7B. Our method provides straightforward arithmetic control over the trade-off between helpfulness and verbosity while maintaining competitive performance with strong baselines such as Direct Preference Optimization (DPO).


A Temporal-Spectral Fusion Transformer with Subject-specific Adapter for Enhancing RSVP-BCI Decoding

arXiv.org Artificial Intelligence

The Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient technology for target retrieval using electroencephalography (EEG) signals. The performance improvement of traditional decoding methods relies on a substantial amount of training data from new test subjects, which increases preparation time for BCI systems. Several studies introduce data from existing subjects to reduce the dependence of performance improvement on data from new subjects, but their optimization strategy based on adversarial learning with extensive data increases training time during the preparation procedure. Moreover, most previous methods only focus on the single-view information of EEG signals, but ignore the information from other views which may further improve performance. To enhance decoding performance while reducing preparation time, we propose a Temporal-Spectral fusion transformer with Subject-specific Adapter (TSformer-SA). Specifically, a cross-view interaction module is proposed to facilitate information transfer and extract common representations across two-view features extracted from EEG temporal signals and spectrogram images. Then, an attention-based fusion module fuses the features of two views to obtain comprehensive discriminative features for classification. Furthermore, a multi-view consistency loss is proposed to maximize the feature similarity between two views of the same EEG signal. Finally, we propose a subject-specific adapter to rapidly transfer the knowledge of the model trained on data from existing subjects to decode data from new subjects. Experimental results show that TSformer-SA significantly outperforms comparison methods and achieves outstanding performance with limited training data from new subjects. This facilitates efficient decoding and rapid deployment of BCI systems in practical use.


Posterior Sampling for Competitive RL: Function Approximation and Partial Observation

arXiv.org Machine Learning

This paper investigates posterior sampling algorithms for competitive reinforcement learning (RL) in the context of general function approximations. Focusing on zero-sum Markov games (MGs) under two critical settings, namely self-play and adversarial learning, we first propose the self-play and adversarial generalized eluder coefficient (GEC) as complexity measures for function approximation, capturing the exploration-exploitation trade-off in MGs. Based on self-play GEC, we propose a model-based self-play posterior sampling method to control both players to learn Nash equilibrium, which can successfully handle the partial observability of states. Furthermore, we identify a set of partially observable MG models fitting MG learning with the adversarial policies of the opponent. Incorporating the adversarial GEC, we propose a model-based posterior sampling method for learning adversarial MG with potential partial observability. We further provide low regret bounds for proposed algorithms that can scale sublinearly with the proposed GEC and the number of episodes $T$. To the best of our knowledge, we for the first time develop generic model-based posterior sampling algorithms for competitive RL that can be applied to a majority of tractable zero-sum MG classes in both fully observable and partially observable MGs with self-play and adversarial learning.


StairNetV3: Depth-aware Stair Modeling using Deep Learning

arXiv.org Artificial Intelligence

Vision-based stair perception can help autonomous mobile robots deal with the challenge of climbing stairs, especially in unfamiliar environments. To address the problem that current monocular vision methods are difficult to model stairs accurately without depth information, this paper proposes a depth-aware stair modeling method for monocular vision. Specifically, we take the extraction of stair geometric features and the prediction of depth images as joint tasks in a convolutional neural network (CNN), with the designed information propagation architecture, we can achieve effective supervision for stair geometric feature learning by depth information. In addition, to complete the stair modeling, we take the convex lines, concave lines, tread surfaces and riser surfaces as stair geometric features and apply Gaussian kernels to enable the network to predict contextual information within the stair lines. Combined with the depth information obtained by depth sensors, we propose a stair point cloud reconstruction method that can quickly get point clouds belonging to the stair step surfaces. Experiments on our dataset show that our method has a significant improvement over the previous best monocular vision method, with an intersection over union (IOU) increase of 3.4 %, and the lightweight version has a fast detection speed and can meet the requirements of most real-time applications. Our dataset is available at https://data.mendeley.com/datasets/6kffmjt7g2/1.


On the Value of Myopic Behavior in Policy Reuse

arXiv.org Artificial Intelligence

Leveraging learned strategies in unfamiliar scenarios is fundamental to human intelligence. In reinforcement learning, rationally reusing the policies acquired from other tasks or human experts is critical for tackling problems that are difficult to learn from scratch. In this work, we present a framework called Selective Myopic bEhavior Control~(SMEC), which results from the insight that the short-term behaviors of prior policies are sharable across tasks. By evaluating the behaviors of prior policies via a hybrid value function architecture, SMEC adaptively aggregates the sharable short-term behaviors of prior policies and the long-term behaviors of the task policy, leading to coordinated decisions. Empirical results on a collection of manipulation and locomotion tasks demonstrate that SMEC outperforms existing methods, and validate the ability of SMEC to leverage related prior policies.