Qiu, Mingming
HKD-SHO: A hybrid smart home system based on knowledge-based and data-driven services
Qiu, Mingming, Najm, Elie, Sharrock, Rémi, Traverson, Bruno
A smart home is realized by setting up various services. Several methods have been proposed to create smart home services, which can be divided into knowledge-based and data-driven approaches. However, knowledge-based approaches usually require manual input from the inhabitant, which can be complicated if the physical phenomena of the concerned environment states are complex, and the inhabitant does not know how to adjust related actuators to achieve the target values of the states monitored by services. Moreover, machine learning-based data-driven approaches that we are interested in are like black boxes and cannot show the inhabitant in which situations certain services proposed certain actuators' states. To solve these problems, we propose a hybrid system called HKD-SHO (Hybrid Knowledge-based and Data-driven services based Smart HOme system), where knowledge-based and machine learning-based data-driven services are profitably integrated. The principal advantage is that it inherits the explicability of knowledge-based services and the dynamism of data-driven services. We compare HKD-SHO with several systems for creating dynamic smart home services, and the results show the better performance of HKD-SHO.
Observation Error Covariance Specification in Dynamical Systems for Data assimilation using Recurrent Neural Networks
Cheng, Sibo, Qiu, Mingming
Data assimilation techniques are widely used to predict complex dynamical systems with uncertainties, based on time-series observation data. Error covariance matrices modelling is an important element in data assimilation algorithms which can considerably impact the forecasting accuracy. The estimation of these covariances, which usually relies on empirical assumptions and physical constraints, is often imprecise and computationally expensive especially for systems of large dimension. In this work, we propose a data-driven approach based on long short term memory (LSTM) recurrent neural networks (RNN) to improve both the accuracy and the efficiency of observation covariance specification in data assimilation for dynamical systems. Learning the covariance matrix from observed/simulated time-series data, the proposed approach does not require any knowledge or assumption about prior error distribution, unlike classical posterior tuning methods. We have compared the novel approach with two state-of-the-art covariance tuning algorithms, namely DI01 and D05, first in a Lorenz dynamical system and then in a 2D shallow water twin experiments framework with different covariance parameterization using ensemble assimilation. This novel method shows significant advantages in observation covariance specification, assimilation accuracy and computational efficiency.