Goto

Collaborating Authors

 Qiu, Mike


BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

arXiv.org Artificial Intelligence

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.


Reasoning and Generalization in RL: A Tool Use Perspective

arXiv.org Artificial Intelligence

Learning to use tools to solve a variety of tasks is an innate ability of humans and has been observed of animals in the wild. However, the underlying mechanisms that are required to learn to use tools are abstract and widely contested in the literature. In this paper, we study tool use in the context of reinforcement learning and propose a framework for analyzing generalization inspired by a classic study of tool using behavior, the trap-tube task. Recently, it has become common in reinforcement learning to measure generalization performance on a single test set of environments. We instead propose transfers that produce multiple test sets that are used to measure specified types of generalization, inspired by abilities demonstrated by animal and human tool users. The source code to reproduce our experiments is publicly available at https://github.com/fomorians/gym_tool_use.