Qiu, Meikang
DR.GAP: Mitigating Bias in Large Language Models using Gender-Aware Prompting with Demonstration and Reasoning
Qiu, Hongye, Xu, Yue, Qiu, Meikang, Wang, Wenjie
Large Language Models (LLMs) exhibit strong natural language processing capabilities but also inherit and amplify societal biases, including gender bias, raising fairness concerns. Existing debiasing methods face significant limitations: parameter tuning requires access to model weights, prompt-based approaches often degrade model utility, and optimization-based techniques lack generalizability. To address these challenges, we propose DR.GAP (Demonstration and Reasoning for Gender-Aware Prompting), an automated and model-agnostic approach that mitigates gender bias while preserving model performance. DR.GAP selects bias-revealing examples and generates structured reasoning to guide models toward more impartial responses. Extensive experiments on coreference resolution and QA tasks across multiple LLMs (GPT-3.5, Llama3, and Llama2-Alpaca) demonstrate its effectiveness, generalization ability, and robustness. DR.GAP can generalize to vision-language models (VLMs), achieving significant bias reduction.
Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning
Liu, Xiao-Yang, Zhu, Rongyi, Zha, Daochen, Gao, Jiechao, Zhong, Shan, Qiu, Meikang
The surge in interest and application of large language models (LLMs) has sparked a drive to fine-tune these models to suit specific applications, such as finance and medical science. However, concerns regarding data privacy have emerged, especially when multiple stakeholders aim to collaboratively enhance LLMs using sensitive data. In this scenario, federated learning becomes a natural choice, allowing decentralized fine-tuning without exposing raw data to central servers. Motivated by this, we investigate how data privacy can be ensured in LLM fine-tuning through practical federated learning approaches, enabling secure contributions from multiple parties to enhance LLMs. Yet, challenges arise: 1) despite avoiding raw data exposure, there is a risk of inferring sensitive information from model outputs, and 2) federated learning for LLMs incurs notable communication overhead. To address these challenges, this article introduces DP-LoRA, a novel federated learning algorithm tailored for LLMs. DP-LoRA preserves data privacy by employing a Gaussian mechanism that adds noise in weight updates, maintaining individual data privacy while facilitating collaborative model training. Moreover, DP-LoRA optimizes communication efficiency via low-rank adaptation, minimizing the transmission of updated weights during distributed training. The experimental results across medical, financial, and general datasets using various LLMs demonstrate that DP-LoRA effectively ensures strict privacy constraints while minimizing communication overhead.
A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and Prospects
Wang, Jiapu, Wang, Boyue, Qiu, Meikang, Pan, Shirui, Xiong, Bo, Liu, Heng, Luo, Linhao, Liu, Tengfei, Hu, Yongli, Yin, Baocai, Gao, Wen
Temporal characteristics are prominently evident in a substantial volume of knowledge, which underscores the pivotal role of Temporal Knowledge Graphs (TKGs) in both academia and industry. However, TKGs often suffer from incompleteness for three main reasons: the continuous emergence of new knowledge, the weakness of the algorithm for extracting structured information from unstructured data, and the lack of information in the source dataset. Thus, the task of Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention, aiming to predict missing items based on the available information. In this paper, we provide a comprehensive review of TKGC methods and their details. Specifically, this paper mainly consists of three components, namely, 1)Background, which covers the preliminaries of TKGC methods, loss functions required for training, as well as the dataset and evaluation protocol; 2)Interpolation, that estimates and predicts the missing elements or set of elements through the relevant available information. It further categorizes related TKGC methods based on how to process temporal information; 3)Extrapolation, which typically focuses on continuous TKGs and predicts future events, and then classifies all extrapolation methods based on the algorithms they utilize. We further pinpoint the challenges and discuss future research directions of TKGC.
Deep Graph Representation Learning and Optimization for Influence Maximization
Ling, Chen, Jiang, Junji, Wang, Junxiang, Thai, My, Xue, Lukas, Song, James, Qiu, Meikang, Zhao, Liang
Influence maximization (IM) is formulated as selecting a set of initial users from a social network to maximize the expected number of influenced users. Researchers have made great progress in designing various traditional methods, and their theoretical design and performance gain are close to a limit. In the past few years, learning-based IM methods have emerged to achieve stronger generalization ability to unknown graphs than traditional ones. However, the development of learning-based IM methods is still limited by fundamental obstacles, including 1) the difficulty of effectively solving the objective function; 2) the difficulty of characterizing the diversified underlying diffusion patterns; and 3) the difficulty of adapting the solution under various node-centrality-constrained IM variants. To cope with the above challenges, we design a novel framework DeepIM to generatively characterize the latent representation of seed sets, and we propose to learn the diversified information diffusion pattern in a data-driven and end-to-end manner. Finally, we design a novel objective function to infer optimal seed sets under flexible node-centrality-based budget constraints. Extensive analyses are conducted over both synthetic and real-world datasets to demonstrate the overall performance of DeepIM. The code and data are available at: https://github.com/triplej0079/DeepIM.
Towards Fair Machine Learning Software: Understanding and Addressing Model Bias Through Counterfactual Thinking
Wang, Zichong, Zhou, Yang, Qiu, Meikang, Haque, Israat, Brown, Laura, He, Yi, Wang, Jianwu, Lo, David, Zhang, Wenbin
The increasing use of Machine Learning (ML) software can lead to unfair and unethical decisions, thus fairness bugs in software are becoming a growing concern. Addressing these fairness bugs often involves sacrificing ML performance, such as accuracy. To address this issue, we present a novel counterfactual approach that uses counterfactual thinking to tackle the root causes of bias in ML software. In addition, our approach combines models optimized for both performance and fairness, resulting in an optimal solution in both aspects. We conducted a thorough evaluation of our approach on 10 benchmark tasks using a combination of 5 performance metrics, 3 fairness metrics, and 15 measurement scenarios, all applied to 8 real-world datasets. The conducted extensive evaluations show that the proposed method significantly improves the fairness of ML software while maintaining competitive performance, outperforming state-of-the-art solutions in 84.6% of overall cases based on a recent benchmarking tool.
DeepSweep: An Evaluation Framework for Mitigating DNN Backdoor Attacks using Data Augmentation
Qiu, Han, Zeng, Yi, Guo, Shangwei, Zhang, Tianwei, Qiu, Meikang, Thuraisingham, Bhavani
Public resources and services (e.g., datasets, training platforms, pre-trained models) have been widely adopted to ease the development of Deep Learning-based applications. However, if the third-party providers are untrusted, they can inject poisoned samples into the datasets or embed backdoors in those models. Such an integrity breach can cause severe consequences, especially in safety- and security-critical applications. Various backdoor attack techniques have been proposed for higher effectiveness and stealthiness. Unfortunately, existing defense solutions are not practical to thwart those attacks in a comprehensive way. In this paper, we investigate the effectiveness of data augmentation techniques in mitigating backdoor attacks and enhancing DL models' robustness. An evaluation framework is introduced to achieve this goal. Specifically, we consider a unified defense solution, which (1) adopts a data augmentation policy to fine-tune the infected model and eliminate the effects of the embedded backdoor; (2) uses another augmentation policy to preprocess input samples and invalidate the triggers during inference. We propose a systematic approach to discover the optimal policies for defending against different backdoor attacks by comprehensively evaluating 71 state-of-the-art data augmentation functions. Extensive experiments show that our identified policy can effectively mitigate eight different kinds of backdoor attacks and outperform five existing defense methods. We envision this framework can be a good benchmark tool to advance future DNN backdoor studies.