Goto

Collaborating Authors

 Qin, Zhen


Rankers, Judges, and Assistants: Towards Understanding the Interplay of LLMs in Information Retrieval Evaluation

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly integral to information retrieval (IR), powering ranking, evaluation, and AI-assisted content creation. This widespread adoption necessitates a critical examination of potential biases arising from the interplay between these LLM-based components. This paper synthesizes existing research and presents novel experiment designs that explore how LLM-based rankers and assistants influence LLM-based judges. We provide the first empirical evidence of LLM judges exhibiting significant bias towards LLM-based rankers. Furthermore, we observe limitations in LLM judges' ability to discern subtle system performance differences. Contrary to some previous findings, our preliminary study does not find evidence of bias against AI-generated content. These results highlight the need for a more holistic view of the LLM-driven information ecosystem. To this end, we offer initial guidelines and a research agenda to ensure the reliable use of LLMs in IR evaluation.


Vertical Federated Learning in Practice: The Good, the Bad, and the Ugly

arXiv.org Artificial Intelligence

Vertical Federated Learning (VFL) is a privacy-preserving collaborative learning paradigm that enables multiple parties with distinct feature sets to jointly train machine learning models without sharing their raw data. Despite its potential to facilitate cross-organizational collaborations, the deployment of VFL systems in real-world applications remains limited. To investigate the gap between existing VFL research and practical deployment, this survey analyzes the real-world data distributions in potential VFL applications and identifies four key findings that highlight this gap. We propose a novel data-oriented taxonomy of VFL algorithms based on real VFL data distributions. Our comprehensive review of existing VFL algorithms reveals that some common practical VFL scenarios have few or no viable solutions. Based on these observations, we outline key research directions aimed at bridging the gap between current VFL research and real-world applications.


LLM Alignment as Retriever Optimization: An Information Retrieval Perspective

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have revolutionized artificial intelligence with capabilities in reasoning, coding, and communication, driving innovation across industries. Their true potential depends on effective alignment to ensure correct, trustworthy and ethical behavior, addressing challenges like misinformation, hallucinations, bias and misuse. While existing Reinforcement Learning (RL)-based alignment methods are notoriously complex, direct optimization approaches offer a simpler alternative. In this work, we introduce a novel direct optimization approach for LLM alignment by drawing on established Information Retrieval (IR) principles. We present a systematic framework that bridges LLM alignment and IR methodologies, mapping LLM generation and reward models to IR's retriever-reranker paradigm. Building on this foundation, we propose LLM Alignment as Retriever Preference Optimization (LarPO), a new alignment method that enhances overall alignment quality. Extensive experiments validate LarPO's effectiveness with 38.9 % and 13.7 % averaged improvement on AlpacaEval2 and MixEval-Hard respectively. Our work opens new avenues for advancing LLM alignment by integrating IR foundations, offering a promising direction for future research.


MiniMax-01: Scaling Foundation Models with Lightning Attention

arXiv.org Artificial Intelligence

We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.


Tensor Product Attention Is All You Need

arXiv.org Artificial Intelligence

Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, significantly shrinking KV cache size at inference time. By factorizing these representations into contextual low-rank components (contextual factorization) and seamlessly integrating with RoPE, TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation of language modeling tasks, we demonstrate that T6 exceeds the performance of standard Transformer baselines including MHA, MQA, GQA, and MLA across various metrics, including perplexity and a range of renowned evaluation benchmarks. Notably, TPA's memory efficiency enables the processing of significantly longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.


Scaling Image Tokenizers with Grouped Spherical Quantization

arXiv.org Artificial Intelligence

Vision tokenizers have gained a lot of attraction due to their scalability and compactness; previous works depend on old-school GAN-based hyperparameters, biased comparisons, and a lack of comprehensive analysis of the scaling behaviours. To tackle those issues, we introduce Grouped Spherical Quantization (GSQ), featuring spherical codebook initialization and lookup regularization to constrain codebook latent to a spherical surface. Our empirical analysis of image tokenizer training strategies demonstrates that GSQ-GAN achieves superior reconstruction quality over state-of-the-art methods with fewer training iterations, providing a solid foundation for scaling studies. Building on this, we systematically examine the scaling behaviours of GSQ, specifically in latent dimensionality, codebook size, and compression ratios, and their impact on model performance. Our findings reveal distinct behaviours at high and low spatial compression levels, underscoring challenges in representing high-dimensional latent spaces. We show that GSQ can restructure high-dimensional latent into compact, low-dimensional spaces, thus enabling efficient scaling with improved quality. As a result, GSQ-GAN achieves a 16x down-sampling with a reconstruction FID (rFID) of 0.50.


Personalized Federated Fine-Tuning for LLMs via Data-Driven Heterogeneous Model Architectures

arXiv.org Artificial Intelligence

A large amount of instructional text data is essential to enhance the performance of pre-trained large language models (LLMs) for downstream tasks. This data can contain sensitive information and therefore cannot be shared in practice, resulting in data silos that limit the effectiveness of LLMs on various tasks. Federated learning (FL) enables collaborative fine-tuning across different clients without sharing their data. Nonetheless, in practice, this instructional text data is highly heterogeneous in both quantity and distribution across clients, necessitating distinct model structures to best accommodate the variations. However, existing federated fine-tuning approaches either enforce the same model structure or rely on predefined ad-hoc architectures unaware of data distribution, resulting in suboptimal performance. To address this challenge, we propose FedAMoLE, a lightweight personalized federated fine-tuning framework that leverages data-driven heterogeneous model architectures. FedAMoLE introduces the Adaptive Mixture of LoRA Experts (AMoLE) module, which facilitates model heterogeneity with minimal communication overhead by allocating varying numbers of LoRA-based domain experts to each client. Furthermore, we develop a reverse selection-based expert assignment (RSEA) strategy, which enables data-driven model architecture adjustment during fine-tuning by allowing domain experts to select clients that best align with their knowledge domains. Extensive experiments across six different scenarios of data heterogeneity demonstrate that FedAMoLE significantly outperforms existing methods for federated LLM fine-tuning, achieving superior accuracy while maintaining good scalability.


Robust Low-rank Tensor Train Recovery

arXiv.org Artificial Intelligence

Tensor train (TT) decomposition represents an $N$-order tensor using $O(N)$ matrices (i.e., factors) of small dimensions, achieved through products among these factors. Due to its compact representation, TT decomposition has found wide applications, including various tensor recovery problems in signal processing and quantum information. In this paper, we study the problem of reconstructing a TT format tensor from measurements that are contaminated by outliers with arbitrary values. Given the vulnerability of smooth formulations to corruptions, we use an $\ell_1$ loss function to enhance robustness against outliers. We first establish the $\ell_1/\ell_2$-restricted isometry property (RIP) for Gaussian measurement operators, demonstrating that the information in the TT format tensor can be preserved using a number of measurements that grows linearly with $N$. We also prove the sharpness property for the $\ell_1$ loss function optimized over TT format tensors. Building on the $\ell_1/\ell_2$-RIP and sharpness property, we then propose two complementary methods to recover the TT format tensor from the corrupted measurements: the projected subgradient method (PSubGM), which optimizes over the entire tensor, and the factorized Riemannian subgradient method (FRSubGM), which optimizes directly over the factors. Compared to PSubGM, the factorized approach FRSubGM significantly reduces the memory cost at the expense of a slightly slower convergence rate. Nevertheless, we show that both methods, with diminishing step sizes, converge linearly to the ground-truth tensor given an appropriate initialization, which can be obtained by a truncated spectral method.


Federated Data-Efficient Instruction Tuning for Large Language Models

arXiv.org Artificial Intelligence

Instruction tuning helps improve pretrained large language models (LLMs) in terms of the responsiveness to human instructions, which is benefited from diversified instruction data. Federated learning extends the sources of instruction data by exploiting the diversified client-side data, making it increasingly popular for tuning LLMs. Existing approaches of federated LLM tuning typically traverse all local data during local training, bringing excessive computation overhead and posing a risk of overfitting local data. Thus, a federated data-efficient instruction tuning approach, which consumes relatively little data from the entire dataset, is needed. In response, this work introduces an approach of federated data-efficient instruction tuning for LLMs, FedHDS, which utilizes a representative subset of edge-side data, coreset, to tune the LLM. It reduces the redundancy of data samples at both intra-client and inter-client levels through a hierarchical data selection framework performed by jointly selecting a small number of representative data samples for local training without sharing the raw data. Extensive experiments conducted across six scenarios with various LLMs, datasets and data partitions demonstrate that FedHDS significantly reduces the amount of data required for fine-tuning while improving the responsiveness of the instruction-tuned LLMs to unseen tasks.


Integrating Planning into Single-Turn Long-Form Text Generation

arXiv.org Artificial Intelligence

Generating high-quality, in-depth textual documents, such as academic papers, news articles, Wikipedia entries, and books, remains a significant challenge for Large Language Models (LLMs). In this paper, we propose to use planning to generate long form content. To achieve our goal, we generate intermediate steps via an auxiliary task that teaches the LLM to plan, reason and structure before generating the final text. Our main novelty lies in a single auxiliary task that does not require multiple rounds of prompting or planning. To overcome the scarcity of training data for these intermediate steps, we leverage LLMs to generate synthetic intermediate writing data such as outlines, key information and summaries from existing full articles. Our experiments demonstrate on two datasets from different domains, namely the scientific news dataset SciNews and Wikipedia datasets in KILT-Wiki and FreshWiki, that LLMs fine-tuned with the auxiliary task generate higher quality documents. We observed +2.5% improvement in ROUGE-Lsum, and a strong 3.60 overall win/loss ratio via human SxS evaluation, with clear wins in organization, relevance, and verifiability.