Goto

Collaborating Authors

 Qin, Yang


SQL-o1: A Self-Reward Heuristic Dynamic Search Method for Text-to-SQL

arXiv.org Artificial Intelligence

The Text-to-SQL(Text2SQL) task aims to convert natural language queries into executable SQL queries. Thanks to the application of large language models (LLMs), significant progress has been made in this field. However, challenges such as model scalability, limited generation space, and coherence issues in SQL generation still persist. To address these issues, we propose SQL-o1, a Self-Reward-based heuristic search method designed to enhance the reasoning ability of LLMs in SQL query generation. SQL-o1 combines Monte Carlo Tree Search (MCTS) for heuristic process-level search and constructs a Schema-Aware dataset to help the model better understand database schemas. Extensive experiments on the Bird and Spider datasets demonstrate that SQL-o1 improves execution accuracy by 10.8\% on the complex Bird dataset compared to the latest baseline methods, even outperforming GPT-4-based approaches. Additionally, SQL-o1 excels in few-shot learning scenarios and shows strong cross-model transferability. Our code is publicly available at:https://github.com/ShuaiLyu0110/SQL-o1.


HGTUL: A Hypergraph-based Model For Trajectory User Linking

arXiv.org Artificial Intelligence

Trajectory User Linking (TUL), which links anonymous trajectories with users who generate them, plays a crucial role in modeling human mobility. Despite significant advancements in this field, existing studies primarily neglect the high-order inter-trajectory relationships, which represent complex associations among multiple trajectories, manifested through multi-location co-occurrence patterns emerging when trajectories intersect at various Points of Interest (POIs). Furthermore, they also overlook the variable influence of POIs on different trajectories, as well as the user class imbalance problem caused by disparities in user activity levels and check-in frequencies. To address these limitations, we propose a novel HyperGraph-based multi-perspective Trajectory User Linking model (HGTUL). Our model learns trajectory representations from both relational and spatio-temporal perspectives: (1) it captures high-order associations among trajectories by constructing a trajectory hypergraph and leverages a hypergraph attention network to learn the variable impact of POIs on trajectories; (2) it models the spatio-temporal characteristics of trajectories by incorporating their temporal and spatial information into a sequential encoder. Moreover, we design a data balancing method to effectively address the user class imbalance problem and experimentally validate its significance in TUL. Extensive experiments on three real-world datasets demonstrate that HGTUL outperforms state-of-the-art baselines, achieving improvements of 2.57%~20.09% and 5.68%~26.00% in ACC@1 and Macro-F1 metrics, respectively.


ROUTE: Robust Multitask Tuning and Collaboration for Text-to-SQL

arXiv.org Artificial Intelligence

Despite the significant advancements in Text-to-SQL (Text2SQL) facilitated by large language models (LLMs), the latest state-of-the-art techniques are still trapped in the in-context learning of closed-source LLMs (e.g., GPT-4), which limits their applicability in open scenarios. Our approach begins with multi-task supervised fine-tuning (SFT) using various synthetic training data related to SQL generation. Unlike existing SFT-based Text2SQL methods, we introduced several additional SFT tasks, including schema linking, noise correction, and continuation writing. Engaging in a variety of SQL generation tasks enhances the model's understanding of SQL syntax and improves its ability to generate high-quality SQL queries. Additionally, inspired by the collaborative modes of LLM agents, we introduce a Multitask Collaboration Prompting (MCP) strategy. This strategy leverages collaboration across several SQL-related tasks to reduce hallucinations during SQL generation, thereby maximizing the potential of enhancing Text2SQL performance through explicit multitask capabilities. Extensive experiments and in-depth analyses have been performed on eight open-source LLMs and five widely-used benchmarks. The results demonstrate that our proposal outperforms the latest Text2SQL methods and yields promising performance. The code and data are available here. Text2SQL has emerged as a popular and practical technology for question answering based on largescale databases, serving as a crucial link between natural language and database systems (Zhang et al., 2024). Recently, Large Language Models (LLMs) have proven to be an effective solution in Text2SQL (Pourreza & Rafiei, 2024a).


A dataset of primary nasopharyngeal carcinoma MRI with multi-modalities segmentation

arXiv.org Artificial Intelligence

Multi-modality magnetic resonance imaging data with various sequences facilitate the early diagnosis, tumor segmentation, and disease staging in the management of nasopharyngeal carcinoma (NPC). The lack of publicly available, comprehensive datasets limits advancements in diagnosis, treatment planning, and the development of machine learning algorithms for NPC. Addressing this critical need, we introduce the first comprehensive NPC MRI dataset, encompassing MR axial imaging of 277 primary NPC patients. This dataset includes T1-weighted, T2-weighted, and contrast-enhanced T1-weighted sequences, totaling 831 scans. In addition to the corresponding clinical data, manually annotated and labeled segmentations by experienced radiologists offer high-quality data resources from untreated primary NPC.


PointCloud-Text Matching: Benchmark Datasets and a Baseline

arXiv.org Artificial Intelligence

In this paper, we present and study a new instance-level retrieval task: PointCloud-Text Matching~(PTM), which aims to find the exact cross-modal instance that matches a given point-cloud query or text query. PTM could be applied to various scenarios, such as indoor/urban-canyon localization and scene retrieval. However, there exists no suitable and targeted dataset for PTM in practice. Therefore, we construct three new PTM benchmark datasets, namely 3D2T-SR, 3D2T-NR, and 3D2T-QA. We observe that the data is challenging and with noisy correspondence due to the sparsity, noise, or disorder of point clouds and the ambiguity, vagueness, or incompleteness of texts, which make existing cross-modal matching methods ineffective for PTM. To tackle these challenges, we propose a PTM baseline, named Robust PointCloud-Text Matching method (RoMa). RoMa consists of two modules: a Dual Attention Perception module (DAP) and a Robust Negative Contrastive Learning module (RNCL). Specifically, DAP leverages token-level and feature-level attention to adaptively focus on useful local and global features, and aggregate them into common representations, thereby reducing the adverse impact of noise and ambiguity. To handle noisy correspondence, RNCL divides negative pairs, which are much less error-prone than positive pairs, into clean and noisy subsets, and assigns them forward and reverse optimization directions respectively, thus enhancing robustness against noisy correspondence. We conduct extensive experiments on our benchmarks and demonstrate the superiority of our RoMa.


Cross-modal Active Complementary Learning with Self-refining Correspondence

arXiv.org Artificial Intelligence

Recently, image-text matching has attracted more and more attention from academia and industry, which is fundamental to understanding the latent correspondence across visual and textual modalities. However, most existing methods implicitly assume the training pairs are well-aligned while ignoring the ubiquitous annotation noise, a.k.a noisy correspondence (NC), thereby inevitably leading to a performance drop. Although some methods attempt to address such noise, they still face two challenging problems: excessive memorizing/overfitting and unreliable correction for NC, especially under high noise. To address the two problems, we propose a generalized Cross-modal Robust Complementary Learning framework (CRCL), which benefits from a novel Active Complementary Loss (ACL) and an efficient Self-refining Correspondence Correction (SCC) to improve the robustness of existing methods. Specifically, ACL exploits active and complementary learning losses to reduce the risk of providing erroneous supervision, leading to theoretically and experimentally demonstrated robustness against NC. SCC utilizes multiple self-refining processes with momentum correction to enlarge the receptive field for correcting correspondences, thereby alleviating error accumulation and achieving accurate and stable corrections. We carry out extensive experiments on three image-text benchmarks, i.e., Flickr30K, MS-COCO, and CC152K, to verify the superior robustness of our CRCL against synthetic and real-world noisy correspondences. Code is available at https://github.com/QinYang79/CRCL.


EVIL: Evidential Inference Learning for Trustworthy Semi-supervised Medical Image Segmentation

arXiv.org Artificial Intelligence

Recently, uncertainty-aware methods have attracted increasing attention in semi-supervised medical image segmentation. However, since these methods rely heavily on the prediction However, current methods usually suffer from of pseudo label, false predictions will severely degrade the drawback that it is difficult to balance the computational the segmentation performance. To improve the quality of cost, estimation accuracy, and theoretical support in a unified pseudo labels, some uncertainty-aware methods have been framework. To alleviate this problem, we introduce proposed, including Monte Carlo dropout (MC-dropout)- the Dempster-Shafer Theory of Evidence (DST) into semisupervised based [9], Information-Entropy-based [10], and Prediction medical image segmentation, dubbed EVidential Variance-based [11] methods. However, these methods suffer Inference Learning (EVIL). EVIL provides a theoretically from some problems: (1) Although MC-dropout is mathematically guaranteed solution to infer accurate uncertainty quantification guaranteed by Bayesian theory, its training process in a single forward pass. Trustworthy pseudo labels on is costly due to the multiple sampling operations; (2) Due unlabeled data are generated after uncertainty estimation. The to the limited sampling times, MC-dropout can't obtain accurate recently proposed consistency regularization-based training uncertainty quantification; (3) Other two uncertainty paradigm is adopted in our framework, which enforces the estimation methods have advantages in computational cost, consistency on the perturbed predictions to enhance the generalization but they lack theoretical support, leading to unstable pseudo with few labeled data. Experimental results show label generation.