Qin, Libo
Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought
Chen, Qiguang, Qin, Libo, Wang, Jiaqi, Zhou, Jinxuan, Che, Wanxiang
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs) on complex reasoning tasks. Recently, a series of studies attempt to explain the mechanisms underlying CoT, aiming to deepen the understanding of its efficacy. Nevertheless, the existing research faces two major challenges: (1) a lack of quantitative metrics to assess CoT capabilities and (2) a dearth of guidance on optimizing CoT performance. Motivated by this, in this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges. To solve the lack of quantification, we first define a reasoning boundary (RB) to quantify the upper-bound of CoT and establish a combination law for RB, enabling a practical quantitative approach applicable to various real-world CoT tasks. To address the lack of optimization, we propose three categories of RBs. We further optimize these categories with combination laws focused on RB promotion and reasoning path optimization for CoT improvement. Through extensive experiments on 27 models and 5 tasks, the study validates the existence and rationality of the proposed framework. Furthermore, it explains the effectiveness of 10 CoT strategies and guides optimization from two perspectives. We hope this work can provide a comprehensive understanding of the boundaries and optimization strategies for reasoning in LLMs. Our code and data are available at https://github.com/LightChen233/reasoning-boundary.
Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring
Mu, Honglin, He, Han, Zhou, Yuxin, Feng, Yunlong, Xu, Yang, Qin, Libo, Shi, Xiaoming, Liu, Zeming, Han, Xudong, Shi, Qi, Zhu, Qingfu, Che, Wanxiang
Large language model (LLM) safety is a critical issue, with numerous studies employing red team testing to enhance model security. Among these, jailbreak methods explore potential vulnerabilities by crafting malicious prompts that induce model outputs contrary to safety alignments. Existing black-box jailbreak methods often rely on model feedback, repeatedly submitting queries with detectable malicious instructions during the attack search process. Although these approaches are effective, the attacks may be intercepted by content moderators during the search process. We propose an improved transfer attack method that guides malicious prompt construction by locally training a mirror model of the target black-box model through benign data distillation. This method offers enhanced stealth, as it does not involve submitting identifiable malicious instructions to the target model during the search phase. Our approach achieved a maximum attack success rate of 92%, or a balanced value of 80% with an average of 1.5 detectable jailbreak queries per sample against GPT-3.5 Turbo on a subset of AdvBench. These results underscore the need for more robust defense mechanisms.
What Factors Affect Multi-Modal In-Context Learning? An In-Depth Exploration
Qin, Libo, Chen, Qiguang, Fei, Hao, Chen, Zhi, Li, Min, Che, Wanxiang
Recently, rapid advancements in Multi-Modal In-Context Learning (MM-ICL) have achieved notable success, which is capable of achieving superior performance across various tasks without requiring additional parameter tuning. However, the underlying rules for the effectiveness of MM-ICL remain under-explored. To fill this gap, this work aims to investigate the research question: "What factors affect the performance of MM-ICL?'' To this end, we investigate extensive experiments on the three core steps of MM-ICL including demonstration retrieval, demonstration ordering, and prompt construction using 6 vision large language models and 20 strategies. Our findings highlight (1) the necessity of a multi-modal retriever for demonstration retrieval, (2) the importance of intra-demonstration ordering over inter-demonstration ordering, and (3) the enhancement of task comprehension through introductory instructions in prompts. We hope this study can serve as a foundational guide for optimizing MM-ICL strategies in future research.
KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing
Yang, Yifei, Cao, Zouying, Chen, Qiguang, Qin, Libo, Yang, Dongjie, Zhao, Hai, Chen, Zhi
The development of large language models (LLMs) has significantly expanded model sizes, resulting in substantial GPU memory requirements during inference. Nowadays, most existing KV cache compression methods focus on intra-layer compression within a single Transformer layer but few works consider layer-wise compression. In this paper, we propose a plug-and-play method called KVSharer, which shares the KV cache between layers to achieve layer-wise compression. Rather than intuitively sharing based on higher similarity, we discover a counterintuitive phenomenon: sharing dissimilar KV caches better preserves the model performance. Experiments show that KVSharer can reduce KV cache computation by 30%, thereby lowering memory consumption without significantly impacting model performance and it can also achieve at least 1.3 times generation acceleration. Although the KV cache Figure 1: Previous methods primarily focus greatly helps improve inference speed, it also significantly on discarding Keys and Values within layers. During the LLM inference In contrast, we share KV caches across layers phase, the KV cache typically accounts for based on their dissimilarity. Recent research has seen a proliferation of methods aimed at compressing KV caches to reduce memory consumption (Zandieh et al., 2024; Xu et al., 2024; Yang et al., 2024b; Zhang et al., 2024b;a; Dong et al., 2024). However, these efforts have predominantly focused on intra-layer KV cache compression within individual Transformer layers of LLM.
Synergistic Dual Spatial-aware Generation of Image-to-Text and Text-to-Image
Zhao, Yu, Fei, Hao, Li, Xiangtai, Qin, Libo, Ji, Jiayi, Zhu, Hongyuan, Zhang, Meishan, Zhang, Min, Wei, Jianguo
In the visual spatial understanding (VSU) area, spatial image-to-text (SI2T) and spatial text-to-image (ST2I) are two fundamental tasks that appear in dual form. Existing methods for standalone SI2T or ST2I perform imperfectly in spatial understanding, due to the difficulty of 3D-wise spatial feature modeling. In this work, we consider modeling the SI2T and ST2I together under a dual learning framework. During the dual framework, we then propose to represent the 3D spatial scene features with a novel 3D scene graph (3DSG) representation that can be shared and beneficial to both tasks. Further, inspired by the intuition that the easier 3D$\to$image and 3D$\to$text processes also exist symmetrically in the ST2I and SI2T, respectively, we propose the Spatial Dual Discrete Diffusion (SD$^3$) framework, which utilizes the intermediate features of the 3D$\to$X processes to guide the hard X$\to$3D processes, such that the overall ST2I and SI2T will benefit each other. On the visual spatial understanding dataset VSD, our system outperforms the mainstream T2I and I2T methods significantly. Further in-depth analysis reveals how our dual learning strategy advances.
Wrong-of-Thought: An Integrated Reasoning Framework with Multi-Perspective Verification and Wrong Information
Zhang, Yongheng, Chen, Qiguang, Zhou, Jingxuan, Wang, Peng, Si, Jiasheng, Wang, Jin, Lu, Wenpeng, Qin, Libo
Chain-of-Thought (CoT) has become a vital technique for enhancing the performance of Large Language Models (LLMs), attracting increasing attention from researchers. One stream of approaches focuses on the iterative enhancement of LLMs by continuously verifying and refining their reasoning outputs for desired quality. Despite its impressive results, this paradigm faces two critical issues: (1) Simple verification methods: The current paradigm relies solely on a single verification method. (2) Wrong Information Ignorance: Traditional paradigms directly ignore wrong information during reasoning and refine the logic paths from scratch each time. To address these challenges, we propose Wrong-of-Thought (WoT), which includes two core modules: (1) Multi-Perspective Verification: A multi-perspective verification method for accurately refining the reasoning process and result, and (2) Wrong Information Utilization: Utilizing wrong information to alert LLMs and reduce the probability of LLMs making same mistakes. Experiments on 8 popular datasets and 5 LLMs demonstrate that WoT surpasses all previous baselines. In addition, WoT exhibits powerful capabilities in difficult computation tasks.
GlobeSumm: A Challenging Benchmark Towards Unifying Multi-lingual, Cross-lingual and Multi-document News Summarization
Ye, Yangfan, Feng, Xiachong, Feng, Xiaocheng, Ma, Weitao, Qin, Libo, Xu, Dongliang, Yang, Qing, Liu, Hongtao, Qin, Bing
News summarization in today's global scene can be daunting with its flood of multilingual content and varied viewpoints from different sources. However, current studies often neglect such real-world scenarios as they tend to focus solely on either single-language or single-document tasks. To bridge this gap, we aim to unify Multi-lingual, Cross-lingual and Multi-document Summarization into a novel task, i.e., MCMS, which encapsulates the real-world requirements all-in-one. Nevertheless, the lack of a benchmark inhibits researchers from adequately studying this invaluable problem. To tackle this, we have meticulously constructed the GLOBESUMM dataset by first collecting a wealth of multilingual news reports and restructuring them into event-centric format. Additionally, we introduce the method of protocol-guided prompting for high-quality and cost-effective reference annotation. In MCMS, we also highlight the challenge of conflicts between news reports, in addition to the issues of redundancies and omissions, further enhancing the complexity of GLOBESUMM. Through extensive experimental analysis, we validate the quality of our dataset and elucidate the inherent challenges of the task. We firmly believe that GLOBESUMM, given its challenging nature, will greatly contribute to the multilingual communities and the evaluation of LLMs.
Breaking Language Barriers: Cross-Lingual Continual Pre-Training at Scale
Zheng, Wenzhen, Pan, Wenbo, Xu, Xu, Qin, Libo, Yue, Li, Zhou, Ming
In recent years, Large Language Models (LLMs) have made significant strides towards Artificial General Intelligence. However, training these models from scratch requires substantial computational resources and vast amounts of text data. In this paper, we explore an alternative approach to constructing an LLM for a new language by continually pretraining (CPT) from existing pretrained LLMs, instead of using randomly initialized parameters. Based on parallel experiments on 40 model sizes ranging from 40M to 5B parameters, we find that 1) CPT converges faster and saves significant resources in a scalable manner; 2) CPT adheres to an extended scaling law derived from Hoffmann et al. (2022) with a joint data-parameter scaling term; 3) The compute-optimal data-parameter allocation for CPT markedly differs based on our estimated scaling factors; 4) The effectiveness of transfer at scale is influenced by training duration and linguistic properties, while robust to data replaying, a method that effectively mitigates catastrophic forgetting in CPT. We hope our findings provide deeper insights into the transferability of LLMs at scale for the research community.
AutoCAP: Towards Automatic Cross-lingual Alignment Planning for Zero-shot Chain-of-Thought
Zhang, Yongheng, Chen, Qiguang, Li, Min, Che, Wanxiang, Qin, Libo
Cross-lingual chain-of-thought can effectively complete reasoning tasks across languages, which gains increasing attention. Recently, dominant approaches in the literature improve cross-lingual alignment capabilities by integrating reasoning knowledge from different languages. Despite achieving excellent performance, current methods still have two main challenges: (1) Manual language specification: They still highly rely on manually selecting the languages to integrate, severely affecting their generalizability; (2) Static weight allocation: Current methods simply integrate all languages equally. In fact, different language reasoning paths should have different weights to achieve better complementation and integration. Motivated by this, we introduce an Automatic Cross-lingual Alignment Planning (AutoCAP) for zero-shot chain-of-thought to address the above challenges. The core of AutoCAP consists of two components: (1) Automatic Language Selection Prompting to guide LLMs to select appropriate languages and (2) Automatic Weight Allocation Prompting to automatically allocate alignment weight scores to each reasoning path. Extensive experiments on several benchmarks reveal that AutoCAP achieves state-of-the-art performance, surpassing previous methods that required manual effort.
CroPrompt: Cross-task Interactive Prompting for Zero-shot Spoken Language Understanding
Qin, Libo, Wei, Fuxuan, Chen, Qiguang, Zhou, Jingxuan, Huang, Shijue, Si, Jiasheng, Lu, Wenpeng, Che, Wanxiang
Slot filling and intent detection are two highly correlated tasks in spoken language understanding (SLU). Recent SLU research attempts to explore zero-shot prompting techniques in large language models to alleviate the data scarcity problem. Nevertheless, the existing prompting work ignores the cross-task interaction information for SLU, which leads to sub-optimal performance. To solve this problem, we present the pioneering work of Cross-task Interactive Prompting (CroPrompt) for SLU, which enables the model to interactively leverage the information exchange across the correlated tasks in SLU. Additionally, we further introduce a multi-task self-consistency mechanism to mitigate the error propagation caused by the intent information injection. We conduct extensive experiments on the standard SLU benchmark and the results reveal that CroPrompt consistently outperforms the existing prompting approaches. In addition, the multi-task self-consistency mechanism can effectively ease the error propagation issue, thereby enhancing the performance. We hope this work can inspire more research on cross-task prompting for SLU.