Qin, Jinghui
Boundary-Driven Table-Filling with Cross-Granularity Contrastive Learning for Aspect Sentiment Triplet Extraction
Li, Qingling, Wen, Wushao, Qin, Jinghui
The Aspect Sentiment Triplet Extraction (ASTE) task aims to extract aspect terms, opinion terms, and their corresponding sentiment polarity from a given sentence. It remains one of the most prominent subtasks in fine-grained sentiment analysis. Most existing approaches frame triplet extraction as a 2D table-filling process in an end-to-end manner, focusing primarily on word-level interactions while often overlooking sentence-level representations. This limitation hampers the model's ability to capture global contextual information, particularly when dealing with multi-word aspect and opinion terms in complex sentences. To address these issues, we propose boundary-driven table-filling with cross-granularity contrastive learning (BTF-CCL) to enhance the semantic consistency between sentence-level representations and word-level representations. By constructing positive and negative sample pairs, the model is forced to learn the associations at both the sentence level and the word level. Additionally, a multi-scale, multi-granularity convolutional method is proposed to capture rich semantic information better. Our approach can capture sentence-level contextual information more effectively while maintaining sensitivity to local details. Experimental results show that the proposed method achieves state-of-the-art performance on public benchmarks according to the F1 score.
Adaptive Few-shot Prompting for Machine Translation with Pre-trained Language Models
Tang, Lei, Qin, Jinghui, Ye, Wenxuan, Tan, Hao, Yang, Zhijing
Recently, Large language models (LLMs) with in-context learning have demonstrated remarkable potential in handling neural machine translation. However, existing evidence shows that LLMs are prompt-sensitive and it is sub-optimal to apply the fixed prompt to any input for downstream machine translation tasks. To address this issue, we propose an adaptive few-shot prompting (AFSP) framework to automatically select suitable translation demonstrations for various source input sentences to further elicit the translation capability of an LLM for better machine translation. First, we build a translation demonstration retrieval module based on LLM's embedding to retrieve top-k semantic-similar translation demonstrations from aligned parallel translation corpus. Rather than using other embedding models for semantic demonstration retrieval, we build a hybrid demonstration retrieval module based on the embedding layer of the deployed LLM to build better input representation for retrieving more semantic-related translation demonstrations. Then, to ensure better semantic consistency between source inputs and target outputs, we force the deployed LLM itself to generate multiple output candidates in the target language with the help of translation demonstrations and rerank these candidates. Besides, to better evaluate the effectiveness of our AFSP framework on the latest language and extend the research boundary of neural machine translation, we construct a high-quality diplomatic Chinese-English parallel dataset that consists of 5,528 parallel Chinese-English sentences. Finally, extensive experiments on the proposed diplomatic Chinese-English parallel dataset and the United Nations Parallel Corpus (Chinese-English part) show the effectiveness and superiority of our proposed AFSP.
SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with Large Language Models
Zhong, Shanshan, Huang, Zhongzhan, Wen, Wushao, Qin, Jinghui, Lin, Liang
Diffusion models, which have emerged to become popular text-to-image generation models, can produce high-quality and content-rich images guided by textual prompts. However, there are limitations to semantic understanding and commonsense reasoning in existing models when the input prompts are concise narrative, resulting in low-quality image generation. To improve the capacities for narrative prompts, we propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models. To reach this goal, we first collect and annotate a new dataset SURD which consists of more than 57,000 semantically corrected multi-modal samples. Each sample contains a simple narrative prompt, a complex keyword-based prompt, and a high-quality image. Then, we align the semantic representation of narrative prompts to the complex prompts and transfer knowledge of large language models (LLMs) to our SUR-adapter via knowledge distillation so that it can acquire the powerful semantic understanding and reasoning capabilities to build a high-quality textual semantic representation for text-to-image generation. We conduct experiments by integrating multiple LLMs and popular pre-trained diffusion models to show the effectiveness of our approach in enabling diffusion models to understand and reason concise natural language without image quality degradation. Our approach can make text-to-image diffusion models easier to use with better user experience, which demonstrates our approach has the potential for further advancing the development of user-friendly text-to-image generation models by bridging the semantic gap between simple narrative prompts and complex keyword-based prompts. The code is released at https://github.com/Qrange-group/SUR-adapter.
ASR: Attention-alike Structural Re-parameterization
Zhong, Shanshan, Huang, Zhongzhan, Wen, Wushao, Qin, Jinghui, Lin, Liang
The structural re-parameterization (SRP) technique is a novel deep learning technique that achieves interconversion between different network architectures through equivalent parameter transformations. This technique enables the mitigation of the extra costs for performance improvement during training, such as parameter size and inference time, through these transformations during inference, and therefore SRP has great potential for industrial and practical applications. The existing SRP methods have successfully considered many commonly used architectures, such as normalizations, pooling methods, and multi-branch convolution. However, the widely used attention modules which drastically slow inference speed cannot be directly implemented by SRP due to these modules usually act on the backbone network in a multiplicative manner and the modules' output is input-dependent during inference, which limits the application scenarios of SRP. In this paper, we conduct extensive experiments from a statistical perspective and discover an interesting phenomenon Stripe Observation, which reveals that channel attention values quickly approach some constant vectors during training. This observation inspires us to propose a simple-yet-effective attention-alike structural re-parameterization (ASR) that allows us to achieve SRP for a given network while enjoying the effectiveness of the attention mechanism. Extensive experiments conducted on several standard benchmarks demonstrate the effectiveness of ASR in generally improving the performance of existing backbone networks, attention modules, and SRP methods without any elaborated model crafting. We also analyze the limitations and provide experimental and theoretical evidence for the strong robustness of the proposed ASR.
Understanding Self-attention Mechanism via Dynamical System Perspective
Huang, Zhongzhan, Liang, Mingfu, Qin, Jinghui, Zhong, Shanshan, Lin, Liang
The self-attention mechanism (SAM) is widely used in various fields of artificial intelligence and has successfully boosted the performance of different models. However, current explanations of this mechanism are mainly based on intuitions and experiences, while there still lacks direct modeling for how the SAM helps performance. To mitigate this issue, in this paper, based on the dynamical system perspective of the residual neural network, we first show that the intrinsic stiffness phenomenon (SP) in the high-precision solution of ordinary differential equations (ODEs) also widely exists in high-performance neural networks (NN). Thus the ability of NN to measure SP at the feature level is necessary to obtain high performance and is an important factor in the difficulty of training NN. Similar to the adaptive step-size method which is effective in solving stiff ODEs, we show that the SAM is also a stiffness-aware step size adaptor that can enhance the model's representational ability to measure intrinsic SP by refining the estimation of stiffness information and generating adaptive attention values, which provides a new understanding about why and how the SAM can benefit the model performance. This novel perspective can also explain the lottery ticket hypothesis in SAM, design new quantitative metrics of representational ability, and inspire a new theoretic-inspired approach, StepNet. Extensive experiments on several popular benchmarks demonstrate that StepNet can extract fine-grained stiffness information and measure SP accurately, leading to significant improvements in various visual tasks.
LSAS: Lightweight Sub-attention Strategy for Alleviating Attention Bias Problem
Zhong, Shanshan, Wen, Wushao, Qin, Jinghui, Chen, Qiangpu, Huang, Zhongzhan
In computer vision, the performance of deep neural networks (DNNs) is highly related to the feature extraction ability, i.e., the ability to recognize and focus on key pixel regions in an image. However, in this paper, we quantitatively and statistically illustrate that DNNs have a serious attention bias problem on many samples from some popular datasets: (1) Position bias: DNNs fully focus on label-independent regions; (2) Range bias: The focused regions from DNN are not completely contained in the ideal region. Moreover, we find that the existing self-attention modules can alleviate these biases to a certain extent, but the biases are still non-negligible. To further mitigate them, we propose a lightweight sub-attention strategy (LSAS), which utilizes high-order sub-attention modules to improve the original self-attention modules. The effectiveness of LSAS is demonstrated by extensive experiments on widely-used benchmark datasets and popular attention networks. We release our code to help other researchers to reproduce the results of LSAS~\footnote{https://github.com/Qrange-group/LSAS}.
UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression
Chen, Jiaqi, Li, Tong, Qin, Jinghui, Lu, Pan, Lin, Liang, Chen, Chongyu, Liang, Xiaodan
Geometry problem solving is a well-recognized testbed for evaluating the high-level multi-modal reasoning capability of deep models. In most existing works, two main geometry problems: calculation and proving, are usually treated as two specific tasks, hindering a deep model to unify its reasoning capability on multiple math tasks. However, in essence, these two tasks have similar problem representations and overlapped math knowledge which can improve the understanding and reasoning ability of a deep model on both two tasks. Therefore, we construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems. Each proving problem is annotated with a multi-step proof with reasons and mathematical expressions. The proof can be easily reformulated as a proving sequence that shares the same formats with the annotated program sequence for calculation problems. Naturally, we also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously in the form of sequence generation, which finally shows the reasoning ability can be improved on both two tasks by unifying formulation. Furthermore, we propose a Mathematical Expression Pretraining (MEP) method that aims to predict the mathematical expressions in the problem solution, thus improving the Geoformer model. Experiments on the UniGeo demonstrate that our proposed Geoformer obtains state-of-the-art performance by outperforming task-specific model NGS with over 5.6% and 3.2% accuracies on calculation and proving problems, respectively.
Deepening Neural Networks Implicitly and Locally via Recurrent Attention Strategy
Zhong, Shanshan, Wen, Wushao, Qin, Jinghui, Huang, Zhongzhan
More and more empirical and theoretical evidence shows that deepening neural networks can effectively improve their performance under suitable training settings. However, deepening the backbone of neural networks will inevitably and significantly increase computation and parameter size. To mitigate these problems, we propose a simple-yet-effective Recurrent Attention Strategy (RAS), which implicitly increases the depth of neural networks with lightweight attention modules by local parameter sharing. The extensive experiments on three widely-used benchmark datasets demonstrate that RAS can improve the performance of neural networks at a slight addition of parameter size and computation, performing favorably against other existing well-known attention modules.
GeoQA: A Geometric Question Answering Benchmark Towards Multimodal Numerical Reasoning
Chen, Jiaqi, Tang, Jianheng, Qin, Jinghui, Liang, Xiaodan, Liu, Lingbo, Xing, Eric P., Lin, Liang
Automatic math problem solving has recently attracted increasing attention as a long-standing AI benchmark. In this paper, we focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge. However, the existing methods were highly dependent on handcraft rules and were merely evaluated on small-scale datasets. Therefore, we propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs, which illustrate the solving process of the given problems. Compared with another publicly available dataset GeoS, GeoQA is 25 times larger, in which the program annotations can provide a practical testbed for future research on explicit and explainable numerical reasoning. Moreover, we introduce a Neural Geometric Solver (NGS) to address geometric problems by comprehensively parsing multimodal information and generating interpretable programs. We further add multiple self-supervised auxiliary tasks on NGS to enhance cross-modal semantic representation. Extensive experiments on GeoQA validate the effectiveness of our proposed NGS and auxiliary tasks. However, the results are still significantly lower than human performance, which leaves large room for future research. Our benchmark and code are released at https://github.com/chen-judge/GeoQA .
MedDG: A Large-scale Medical Consultation Dataset for Building Medical Dialogue System
Liu, Wenge, Tang, Jianheng, Qin, Jinghui, Xu, Lin, Li, Zhen, Liang, Xiaodan
Developing conversational agents to interact with patients and provide primary clinical advice has attracted increasing attention due to its huge application potential, especially in the time of COVID-19 Pandemic. However, the training of end-to-end neural-based medical dialogue system is restricted by an insufficient quantity of medical dialogue corpus. In this work, we make the first attempt to build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG, with more than 17K conversations collected from the online health consultation community. Five different categories of entities, including diseases, symptoms, attributes, tests, and medicines, are annotated in each conversation of MedDG as additional labels. To push forward the future research on building expert-sensitive medical dialogue system, we proposes two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation. To acquire a clear comprehension on these two medical dialogue tasks, we implement several state-of-the-art benchmarks, as well as design two dialogue models with a further consideration on the predicted entities. Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset, and the response quality can be enhanced with the help of auxiliary entity information. From human evaluation, the simple retrieval model outperforms several state-of-the-art generative models, indicating that there still remains a large room for improvement on generating medically meaningful responses.