Goto

Collaborating Authors

 Qihang Lin


Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than $O(1/\epsilon)$

Neural Information Processing Systems

In this paper, we develop a novel homotopy smoothing (HOPS) algorithm for solving a family of non-smooth problems that is composed of a non-smooth term with an explicit max-structure and a smooth term or a simple non-smooth term whose proximal mapping is easy to compute. The best known iteration complexity for solving such non-smooth optimization problems is O(1/ɛ) without any assumption on the strong convexity.


ADMM without a Fixed Penalty Parameter: Faster Convergence with New Adaptive Penalization

Neural Information Processing Systems

Alternating direction method of multipliers (ADMM) has received tremendous interest for solving numerous problems in machine learning, statistics and signal processing. However, it is known that the performance of ADMM and many of its variants is very sensitive to the penalty parameter of a quadratic penalty applied to the equality constraints. Although several approaches have been proposed for dynamically changing this parameter during the course of optimization, they do not yield theoretical improvement in the convergence rate and are not directly applicable to stochastic ADMM. In this paper, we develop a new ADMM and its linearized variant with a new adaptive scheme to update the penalty parameter. Our methods can be applied under both deterministic and stochastic optimization settings for structured non-smooth objective function. The novelty of the proposed scheme lies at that it is adaptive to a local sharpness property of the objective function, which marks the key difference from previous adaptive scheme that adjusts the penalty parameter per-iteration based on certain conditions on iterates.


Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter

Neural Information Processing Systems

Error bound, an inherent property of an optimization problem, has recently revived in the development of algorithms with improved global convergence without strong convexity. The most studied error bound is the quadratic error bound, which generalizes strong convexity and is satisfied by a large family of machine learning problems. Quadratic error bound have been leveraged to achieve linear convergence in many first-order methods including the stochastic variance reduced gradient (SVRG) method, which is one of the most important stochastic optimization methods in machine learning. However, the studies along this direction face the critical issue that the algorithms must depend on an unknown growth parameter (a generalization of strong convexity modulus) in the error bound. This parameter is difficult to estimate exactly and the algorithms choosing this parameter heuristically do not have theoretical convergence guarantee. To address this issue, we propose novel SVRG methods that automatically search for this unknown parameter on the fly of optimization while still obtain almost the same convergence rate as when this parameter is known. We also analyze the convergence property of SVRG methods under Hölderian error bound, which generalizes the quadratic error bound.



Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter

Neural Information Processing Systems

Error bound, an inherent property of an optimization problem, has recently revived in the development of algorithms with improved global convergence without strong convexity. The most studied error bound is the quadratic error bound, which generalizes strong convexity and is satisfied by a large family of machine learning problems. Quadratic error bound have been leveraged to achieve linear convergence in many first-order methods including the stochastic variance reduced gradient (SVRG) method, which is one of the most important stochastic optimization methods in machine learning. However, the studies along this direction face the critical issue that the algorithms must depend on an unknown growth parameter (a generalization of strong convexity modulus) in the error bound. This parameter is difficult to estimate exactly and the algorithms choosing this parameter heuristically do not have theoretical convergence guarantee. To address this issue, we propose novel SVRG methods that automatically search for this unknown parameter on the fly of optimization while still obtain almost the same convergence rate as when this parameter is known. We also analyze the convergence property of SVRG methods under Hölderian error bound, which generalizes the quadratic error bound.