Qiaoben, You
Consistent Attack: Universal Adversarial Perturbation on Embodied Vision Navigation
Ying, Chengyang, Qiaoben, You, Zhou, Xinning, Su, Hang, Ding, Wenbo, Ai, Jianyong
Embodied agents in vision navigation coupled with deep neural networks have attracted increasing attention. However, deep neural networks have been shown vulnerable to malicious adversarial noises, which may potentially cause catastrophic failures in Embodied Vision Navigation. Among different adversarial noises, universal adversarial perturbations (UAP), i.e., a constant image-agnostic perturbation applied on every input frame of the agent, play a critical role in Embodied Vision Navigation since they are computation-efficient and application-practical during the attack. However, existing UAP methods ignore the system dynamics of Embodied Vision Navigation and might be sub-optimal. In order to extend UAP to the sequential decision setting, we formulate the disturbed environment under the universal noise $\delta$, as a $\delta$-disturbed Markov Decision Process ($\delta$-MDP). Based on the formulation, we analyze the properties of $\delta$-MDP and propose two novel Consistent Attack methods, named Reward UAP and Trajectory UAP, for attacking Embodied agents, which consider the dynamic of the MDP and calculate universal noises by estimating the disturbed distribution and the disturbed Q function. For various victim models, our Consistent Attack can cause a significant drop in their performance in the PointGoal task in Habitat with different datasets and different scenes. Extensive experimental results indicate that there exist serious potential risks for applying Embodied Vision Navigation methods to the real world.
Understanding Adversarial Attacks on Observations in Deep Reinforcement Learning
Qiaoben, You, Ying, Chengyang, Zhou, Xinning, Su, Hang, Zhu, Jun, Zhang, Bo
Deep reinforcement learning models are vulnerable to adversarial attacks that can decrease a victim's cumulative expected reward by manipulating the victim's observations. Despite the efficiency of previous optimization-based methods for generating adversarial noise in supervised learning, such methods might not be able to achieve the lowest cumulative reward since they do not explore the environmental dynamics in general. In this paper, we provide a framework to better understand the existing methods by reformulating the problem of adversarial attacks on reinforcement learning in the function space. Our reformulation generates an optimal adversary in the function space of the targeted attacks, repelling them via a generic two-stage framework. In the first stage, we train a deceptive policy by hacking the environment, and discover a set of trajectories routing to the lowest reward or the worst-case performance. Next, the adversary misleads the victim to imitate the deceptive policy by perturbing the observations. Compared to existing approaches, we theoretically show that our adversary is stronger under an appropriate noise level. Extensive experiments demonstrate our method's superiority in terms of efficiency and effectiveness, achieving the state-of-the-art performance in both Atari and MuJoCo environments.