Goto

Collaborating Authors

 Qiao, Chen


A Deep Spatio-Temporal Architecture for Dynamic Effective Connectivity Network Analysis Based on Dynamic Causal Discovery

arXiv.org Artificial Intelligence

Dynamic effective connectivity networks (dECNs) reveal the changing directed brain activity and the dynamic causal influences among brain regions, which facilitate the identification of individual differences and enhance the understanding of human brain. Although the existing causal discovery methods have shown promising results in effective connectivity network analysis, they often overlook the dynamics of causality, in addition to the incorporation of spatio-temporal information in brain activity data. To address these issues, we propose a deep spatio-temporal fusion architecture, which employs a dynamic causal deep encoder to incorporate spatio-temporal information into dynamic causality modeling, and a dynamic causal deep decoder to verify the discovered causality. The effectiveness of the proposed method is first illustrated with simulated data. Then, experimental results from Philadelphia Neurodevelopmental Cohort (PNC) demonstrate the superiority of the proposed method in inferring dECNs, which reveal the dynamic evolution of directed flow between brain regions. The analysis shows the difference of dECNs between young adults and children. Specifically, the directed brain functional networks transit from fluctuating undifferentiated systems to more stable specialized networks as one grows. This observation provides further evidence on the modularization and adaptation of brain networks during development, leading to higher cognitive abilities observed in young adults.


GATE: Adaptive Learning with Working Memory by Information Gating in Multi-lamellar Hippocampal Formation

arXiv.org Artificial Intelligence

Hippocampal formation (HF) can rapidly adapt to varied environments and build flexible working memory (WM). To mirror the HF's mechanism on generalization and WM, we propose a model named Generalization and Associative Temporary Encoding (GATE), which deploys a 3-D multi-lamellar dorsoventral (DV) architecture, and learns to build up internally representation from externally driven information layer-wisely. In each lamella, regions of HF: EC3-CA1-EC5-EC3 forms a re-entrant loop that discriminately maintains information by EC3 persistent activity, and selectively readouts the retained information by CA1 neurons. CA3 and EC5 further provides gating function that controls these processes. After learning complex WM tasks, GATE forms neuron representations that align with experimental records, including splitter, lap, evidence, trace, delay-active cells, as well as conventional place cells. Crucially, DV architecture in GATE also captures information, range from detailed to abstract, which enables a rapid generalization ability when cue, environment or task changes, with learned representations inherited. GATE promises a viable framework for understanding the HF's flexible memory mechanisms and for progressively developing brain-inspired intelligent systems.