Qian, Weizhu
Conditional Lagrangian Wasserstein Flow for Time Series Imputation
Qian, Weizhu, Zhang, Dalin, Zhao, Yan
Time series imputation is important for numerous real-world applications. To overcome the limitations of diffusion model-based imputation methods, e.g., slow convergence in inference, we propose a novel method for time series imputation in this work, called Conditional Lagrangian Wasserstein Flow. The proposed method leverages the (conditional) optimal transport theory to learn the probability flow in a simulation-free manner, in which the initial noise, missing data, and observations are treated as the source distribution, target distribution, and conditional information, respectively. According to the principle of least action in Lagrangian mechanics, we learn the velocity by minimizing the corresponding kinetic energy. Moreover, to incorporate more prior information into the model, we parameterize the derivative of a task-specific potential function via a variational autoencoder, and combine it with the base estimator to formulate a Rao-Blackwellized sampler. The propose model allows us to take less intermediate steps to produce high-quality samples for inference compared to existing diffusion methods. Finally, the experimental results on the real-word datasets show that the proposed method achieves competitive performance on time series imputation compared to the state-of-the-art methods.
E2USD: Efficient-yet-effective Unsupervised State Detection for Multivariate Time Series
Lai, Zhichen, Li, Huan, Zhang, Dalin, Zhao, Yan, Qian, Weizhu, Jensen, Christian S.
Cyber-physical system sensors emit multivariate time series (MTS) that monitor physical system processes. Such time series generally capture unknown numbers of states, each with a different duration, that correspond to specific conditions, e.g., "walking" or "running" in human-activity monitoring. Unsupervised identification of such states facilitates storage and processing in subsequent data analyses, as well as enhances result interpretability. Existing state-detection proposals face three challenges. First, they introduce substantial computational overhead, rendering them impractical in resourceconstrained or streaming settings. Second, although state-of-the-art (SOTA) proposals employ contrastive learning for representation, insufficient attention to false negatives hampers model convergence and accuracy. Third, SOTA proposals predominantly only emphasize offline non-streaming deployment, we highlight an urgent need to optimize online streaming scenarios. We propose E2Usd that enables efficient-yet-accurate unsupervised MTS state detection. E2Usd exploits a Fast Fourier Transform-based Time Series Compressor (fftCompress) and a Decomposed Dual-view Embedding Module (ddEM) that together encode input MTSs at low computational overhead. Additionally, we propose a False Negative Cancellation Contrastive Learning method (fnccLearning) to counteract the effects of false negatives and to achieve more cluster-friendly embedding spaces. To reduce computational overhead further in streaming settings, we introduce Adaptive Threshold Detection (adaTD). Comprehensive experiments with six baselines and six datasets offer evidence that E2Usd is capable of SOTA accuracy at significantly reduced computational overhead.
Learning Robust Variational Information Bottleneck with Reference
Qian, Weizhu, Chen, Bowei, Huang, Xiaowei
We propose a new approach to train a variational information bottleneck (VIB) that improves its robustness to adversarial perturbations. Unlike the traditional methods where the hard labels are usually used for the classification task, we refine the categorical class information in the training phase with soft labels which are obtained from a pre-trained reference neural network and can reflect the likelihood of the original class labels. We also relax the Gaussian posterior assumption in the VIB implementation by using the mutual information neural estimation. Extensive experiments have been performed with the MNIST and CIFAR-10 datasets, and the results show that our proposed approach significantly outperforms the benchmarked models.
Multi-Task Variational Information Bottleneck
Qian, Weizhu, Chen, Bowei, Gechter, Franck
In this paper we propose a variational information bottleneck (VIB)-based framework for multi-task learning (MTL), where a more accurate latent representation can be obtained from the input data which also learn different tasks in parallel. Moreover, the task-dependent uncertainties are taken into account to learn the relative weights of task loss functions. The proposed method is examined with three publicly available data sets under different adversarial attacks. The overall classification performance of our model is promising. It can achieve comparable classification accuracies as the benchmarked models, and has shown a better robustness against adversarial attacks compared with other MTL models.
A Probabilistic Approach for Discovering Daily Human Mobility Patterns with Mobile Data
Qian, Weizhu, Lauri, Fabrice, Gechter, Franck
Discovering human mobility patterns with geo-location data collected from smartphone users has been a hot research topic in recent years. In this paper, we attempt to discover daily mobile patterns based on GPS data. We view this problem from a probabilistic perspective in order to explore more information from the original GPS data compared to other conventional methods. A non-parameter Bayesian modeling method, Infinite Gaussian Mixture Model, is used to estimate the probability density for the daily mobility. Then, we use Kullback-Leibler divergence as the metrics to measure the similarity of different probability distributions. And combining Infinite Gaussian Mixture Model and Kullback-Leibler divergence, we derived an automatic clustering algorithm to discover mobility patterns for each individual user without setting the number of clusters in advance. In the experiments, the effectiveness of our method is validated on the real user data collected from different users. The results show that the IGMM-based algorithm outperforms the GMM-based algorithm. We also test our methods on the dataset with different lengths to discover the minimum data length for discovering mobility patterns.