Qi, Yijiashun
Graph Neural Network-Driven Hierarchical Mining for Complex Imbalanced Data
Qi, Yijiashun, Lu, Quanchao, Dou, Shiyu, Sun, Xiaoxuan, Li, Muqing, Li, Yankaiqi
This study presents a hierarchical mining framework for high-dimensional imbalanced data, leveraging a depth graph model to address the inherent performance limitations of conventional approaches in handling complex, high-dimensional data distributions with imbalanced sample representations. By constructing a structured graph representation of the dataset and integrating graph neural network (GNN) embeddings, the proposed method effectively captures global interdependencies among samples. Furthermore, a hierarchical strategy is employed to enhance the characterization and extraction of minority class feature patterns, thereby facilitating precise and robust imbalanced data mining. Empirical evaluations across multiple experimental scenarios validate the efficacy of the proposed approach, demonstrating substantial improvements over traditional methods in key performance metrics, including pattern discovery count, average support, and minority class coverage. Notably, the method exhibits superior capabilities in minority-class feature extraction and pattern correlation analysis. These findings underscore the potential of depth graph models, in conjunction with hierarchical mining strategies, to significantly enhance the efficiency and accuracy of imbalanced data analysis. This research contributes a novel computational framework for high-dimensional complex data processing and lays the foundation for future extensions to dynamically evolving imbalanced data and multi-modal data applications, thereby expanding the applicability of advanced data mining methodologies to more intricate analytical domains.
Collaborative Optimization in Financial Data Mining Through Deep Learning and ResNeXt
Feng, Pengbin, Li, Yankaiqi, Qi, Yijiashun, Guo, Xiaojun, Lin, Zhenghao
This study proposes a multi-task learning framework based on ResNeXt, aiming to solve the problem of feature extraction and task collaborative optimization in financial data mining. Financial data usually has the complex characteristics of high dimensionality, nonlinearity, and time series, and is accompanied by potential correlations between multiple tasks, making it difficult for traditional methods to meet the needs of data mining. This study introduces the ResNeXt model into the multi-task learning framework and makes full use of its group convolution mechanism to achieve efficient extraction of local patterns and global features of financial data. At the same time, through the design of task sharing layers and dedicated layers, it is established between multiple related tasks. Deep collaborative optimization relationships. Through flexible multi-task loss weight design, the model can effectively balance the learning needs of different tasks and improve overall performance. Experiments are conducted on a real S&P 500 financial data set, verifying the significant advantages of the proposed framework in classification and regression tasks. The results indicate that, when compared to other conventional deep learning models, the proposed method delivers superior performance in terms of accuracy, F1 score, root mean square error, and other metrics, highlighting its outstanding effectiveness and robustness in handling complex financial data. This research provides an efficient and adaptable solution for financial data mining, and at the same time opens up a new research direction for the combination of multi-task learning and deep learning, which has important theoretical significance and practical application value.
Benchmarking Large Language Models for Image Classification of Marine Mammals
Qi, Yijiashun, Cai, Shuzhang, Zhao, Zunduo, Li, Jiaming, Lin, Yanbin, Wang, Zhiqiang
As Artificial Intelligence (AI) has developed rapidly over the past few decades, the new generation of AI, Large Language Models (LLMs) trained on massive datasets, has achieved ground-breaking performance in many applications. Further progress has been made in multimodal LLMs, with many datasets created to evaluate LLMs with vision abilities. However, none of those datasets focuses solely on marine mammals, which are indispensable for ecological equilibrium. In this work, we build a benchmark dataset with 1,423 images of 65 kinds of marine mammals, where each animal is uniquely classified into different levels of class, ranging from species-level to medium-level to group-level. Moreover, we evaluate several approaches for classifying these marine mammals: (1) machine learning (ML) algorithms using embeddings provided by neural networks, (2) influential pre-trained neural networks, (3) zero-shot models: CLIP and LLMs, and (4) a novel LLM-based multi-agent system (MAS). The results demonstrate the strengths of traditional models and LLMs in different aspects, and the MAS can further improve the classification performance. The dataset is available on GitHub: https://github.com/yeyimilk/LLM-Vision-Marine-Animals.git.