Goto

Collaborating Authors

 Puzicha, Jan


Shape Context: A New Descriptor for Shape Matching and Object Recognition

Neural Information Processing Systems

We develop an approach to object recognition based on matching shapes and using a resulting measure of similarity in a nearest neighbor classifier. The key algorithmic problem here is that of finding pointwise correspondences between an image shape and a stored prototype shape. We introduce a new shape descriptor, the shape context, which makes this possible, using a simple and robust algorithm. We demonstrate that shape contexts greatly simplify recovery of correspondences between points of two given shapes. Once shapes are aligned, shape contexts are used to define a robust score for measuring shape similarity. We have used this score in a nearest-neighbor classifier for recognition of hand written digits as well as 3D objects, using exactly the same distance function.


Shape Context: A New Descriptor for Shape Matching and Object Recognition

Neural Information Processing Systems

We develop an approach to object recognition based on matching shapesand using a resulting measure of similarity in a nearest neighbor classifier. The key algorithmic problem here is that of finding pointwise correspondences between an image shape and a stored prototype shape. We introduce a new shape descriptor, the shape context, which makes this possible, using a simple and robust algorithm. We demonstrate that shape contexts greatly simplify recovery of correspondences between points of two given shapes. Once shapes are aligned, shape contexts are used to define a robust score for measuring shape similarity.


Learning from Dyadic Data

Neural Information Processing Systems

Dyadzc data refers to a domain with two finite sets of objects in which observations are made for dyads, i.e., pairs with one element from either set. This type of data arises naturally in many application ranging from computational linguistics and information retrieval to preference analysis and computer vision. In this paper, we present a systematic, domain-independent framework of learning from dyadic data by statistical mixture models. Our approach covers different models with fiat and hierarchical latent class structures. We propose an annealed version of the standard EM algorithm for model fitting which is empirically evaluated on a variety of data sets from different domains. 1 Introduction Over the past decade learning from data has become a highly active field of research distributed over many disciplines like pattern recognition, neural computation, statistics, machine learning, and data mining.


Learning from Dyadic Data

Neural Information Processing Systems

Dyadzc data refers to a domain with two finite sets of objects in which observations are made for dyads, i.e., pairs with one element from either set. This type of data arises naturally in many application ranging from computational linguistics and information retrieval to preference analysis and computer vision. In this paper, we present a systematic, domain-independent framework of learning from dyadic data by statistical mixture models. Our approach covers different models with fiat and hierarchical latent class structures. We propose an annealed version of the standard EM algorithm for model fitting which is empirically evaluated on a variety of data sets from different domains. 1 Introduction Over the past decade learning from data has become a highly active field of research distributed over many disciplines like pattern recognition, neural computation, statistics, machine learning, and data mining.


Visualizing Group Structure

Neural Information Processing Systems

Cluster analysis is a fundamental principle in exploratory data analysis, providing the user with a description of the group structure ofgiven data. A key problem in this context is the interpretation andvisualization of clustering solutions in high-dimensional or abstract data spaces. In particular, probabilistic descriptions of the group structure, essential to capture inter-cluster relationships, arehardly assessable by simple inspection ofthe probabilistic assignment variables. VVe present a novel approach to the visualization ofgroup structure. It is based on a statistical model of the object assignments which have been observed or estimated by a probabilistic clustering procedure. The objects or data points are embedded in a low dimensional Euclidean space by approximating the observed data statistics with a Gaussian mixture model. The algorithm provides a new approach to the visualization of the inherent structurefor a broad variety of data types, e.g.


Learning from Dyadic Data

Neural Information Processing Systems

Dyadzc data refers to a domain with two finite sets of objects in which observations are made for dyads, i.e., pairs with one element from either set. This type of data arises naturally in many application rangingfrom computational linguistics and information retrieval to preference analysis and computer vision. In this paper, we present a systematic, domain-independent framework of learning fromdyadic data by statistical mixture models. Our approach covers different models with fiat and hierarchical latent class structures. Wepropose an annealed version of the standard EM algorithm for model fitting which is empirically evaluated on a variety of data sets from different domains. 1 Introduction Over the past decade learning from data has become a highly active field of research distributedover many disciplines like pattern recognition, neural computation, statistics,machine learning, and data mining.


Visualizing Group Structure

Neural Information Processing Systems

Cluster analysis is a fundamental principle in exploratory data analysis, providing the user with a description of the group structure of given data. A key problem in this context is the interpretation and visualization of clustering solutions in high-dimensional or abstract data spaces. In particular, probabilistic descriptions of the group structure, essential to capture inter-cluster relationships, are hardly assessable by simple inspection ofthe probabilistic assignment variables. VVe present a novel approach to the visualization of group structure. It is based on a statistical model of the object assignments which have been observed or estimated by a probabilistic clustering procedure. The objects or data points are embedded in a low dimensional Euclidean space by approximating the observed data statistics with a Gaussian mixture model. The algorithm provides a new approach to the visualization of the inherent structure for a broad variety of data types, e.g.