Goto

Collaborating Authors

 Puthawala, Michael


Deep Learning for Forensic Identification of Source

arXiv.org Machine Learning

We used contrastive neural networks to learn useful similarity scores between the 144 cartridge casings in the NBIDE dataset, under the common-but-unknown source paradigm. The common-but-unknown source problem is a problem archetype in forensics where the question is whether two objects share a common source (e.g. were two cartridge casings fired from the same firearm). Similarity scores are often used to interpret evidence under this paradigm. We directly compared our results to a state-of-the-art algorithm, Congruent Matching Cells (CMC). When trained on the E3 dataset of 2967 cartridge casings, contrastive learning achieved an ROC AUC of 0.892. The CMC algorithm achieved 0.867. We also conducted an ablation study where we varied the neural network architecture; specifically, the network's width or depth. The ablation study showed that contrastive network performance results are somewhat robust to the network architecture. This work was in part motivated by the use of similarity scores attained via contrastive learning for standard evidence interpretation methods such as score-based likelihood ratios.


Can neural operators always be continuously discretized?

arXiv.org Artificial Intelligence

We consider the problem of discretization of neural operators between Hilbert spaces in a general framework including skip connections. We focus on bijective neural operators through the lens of diffeomorphisms in infinite dimensions. Framed using category theory, we give a no-go theorem that shows that diffeomorphisms between Hilbert spaces or Hilbert manifolds may not admit any continuous approximations by diffeomorphisms on finite-dimensional spaces, even if the approximations are nonlinear. The natural way out is the introduction of strongly monotone diffeomorphisms and layerwise strongly monotone neural operators which have continuous approximations by strongly monotone diffeomorphisms on finite-dimensional spaces. For these, one can guarantee discretization invariance, while ensuring that finite-dimensional approximations converge not only as sequences of functions, but that their representations converge in a suitable sense as well. Finally, we show that bilipschitz neural operators may always be written in the form of an alternating composition of strongly monotone neural operators, plus a simple isometry. Thus we realize a rigorous platform for discretization of a generalization of a neural operator. We also show that neural operators of this type may be approximated through the composition of finite-rank residual neural operators, where each block is strongly monotone, and may be inverted locally via iteration. We conclude by providing a quantitative approximation result for the discretization of general bilipschitz neural operators.


Globally injective and bijective neural operators

arXiv.org Artificial Intelligence

Recently there has been great interest in operator learning, where networks learn operators between function spaces from an essentially infinite-dimensional perspective. In this work we present results for when the operators learned by these networks are injective and surjective. As a warmup, we combine prior work in both the finite-dimensional ReLU and operator learning setting by giving sharp conditions under which ReLU layers with linear neural operators are injective. We then consider the case the case when the activation function is pointwise bijective and obtain sufficient conditions for the layer to be injective. We remark that this question, while trivial in the finite-rank case, is subtler in the infinite-rank case and is proved using tools from Fredholm theory. Next, we prove that our supplied injective neural operators are universal approximators and that their implementation, with finite-rank neural networks, are still injective. This ensures that injectivity is not `lost' in the transcription from analytical operators to their finite-rank implementation with networks. Finally, we conclude with an increase in abstraction and consider general conditions when subnetworks, which may be many layers deep, are injective and surjective and provide an exact inversion from a `linearization.' This section uses general arguments from Fredholm theory and Leray-Schauder degree theory for non-linear integral equations to analyze the mapping properties of neural operators in function spaces. These results apply to subnetworks formed from the layers considered in this work, under natural conditions. We believe that our work has applications in Bayesian UQ where injectivity enables likelihood estimation and in inverse problems where surjectivity and injectivity corresponds to existence and uniqueness, respectively.


Globally Injective ReLU Networks

arXiv.org Machine Learning

Injectivity plays an important role in generative models where it enables inference; in inverse problems and compressed sensing with generative priors it is a precursor to well posedness. We establish sharp characterizations of injectivity of fully-connected and convolutional ReLU layers and networks. First, through a layerwise analysis, we show that an expansivity factor of two is necessary and sufficient for injectivity by constructing appropriate weight matrices. We show that global injectivity with iid Gaussian matrices, a commonly used tractable model, requires larger expansivity between 3.4 and 5.7. We also characterize the stability of inverting an injective network via worst-case Lipschitz constants of the inverse. We then use arguments from differential topology to study injectivity of deep networks and prove that any Lipschitz map can be approximated by an injective ReLU network. Finally, using an argument based on random projections, we show that an end-to-end---rather than layerwise---doubling of the dimension suffices for injectivity. Our results establish a theoretical basis for the study of nonlinear inverse and inference problems using neural networks.