Goto

Collaborating Authors

 Pushpanathan, Krithi


Are Traditional Deep Learning Model Approaches as Effective as a Retinal-Specific Foundation Model for Ocular and Systemic Disease Detection?

arXiv.org Artificial Intelligence

Background: RETFound, a self-supervised, retina-specific foundation model (FM), showed potential in downstream applications. However, its comparative performance with traditional deep learning (DL) models remains incompletely understood. This study aimed to evaluate RETFound against three ImageNet-pretrained supervised DL models (ResNet50, ViT-base, SwinV2) in detecting ocular and systemic diseases. Methods: We fine-tuned/trained RETFound and three DL models on full datasets, 50%, 20%, and fixed sample sizes (400, 200, 100 images, with half comprising disease cases; for each DR severity class, 100 and 50 cases were used. Fine-tuned models were tested internally using the SEED (53,090 images) and APTOS-2019 (3,672 images) datasets and externally validated on population-based (BES, CIEMS, SP2, UKBB) and open-source datasets (ODIR-5k, PAPILA, GAMMA, IDRiD, MESSIDOR-2). Model performance was compared using area under the receiver operating characteristic curve (AUC) and Z-tests with Bonferroni correction (P<0.05/3). Interpretation: Traditional DL models are mostly comparable to RETFound for ocular disease detection with large datasets. However, RETFound is superior in systemic disease detection with smaller datasets. These findings offer valuable insights into the respective merits and limitation of traditional models and FMs.


Can OpenAI o1 Reason Well in Ophthalmology? A 6,990-Question Head-to-Head Evaluation Study

arXiv.org Artificial Intelligence

Question: What is the performance and reasoning ability of OpenAI o1 compared to other large language models in addressing ophthalmology-specific questions? Findings: This study evaluated OpenAI o1 and five LLMs using 6,990 ophthalmological questions from MedMCQA. O1 achieved the highest accuracy (0.88) and macro-F1 score but ranked third in reasoning capabilities based on text-generation metrics. Across subtopics, o1 ranked first in ``Lens'' and ``Glaucoma'' but second to GPT-4o in ``Corneal and External Diseases'', ``Vitreous and Retina'' and ``Oculoplastic and Orbital Diseases''. Subgroup analyses showed o1 performed better on queries with longer ground truth explanations. Meaning: O1's reasoning enhancements may not fully extend to ophthalmology, underscoring the need for domain-specific refinements to optimize performance in specialized fields like ophthalmology.


Language Enhanced Model for Eye (LEME): An Open-Source Ophthalmology-Specific Large Language Model

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are poised to revolutionize healthcare. Ophthalmology-specific LLMs remain scarce and underexplored. We introduced an open-source, specialized LLM for ophthalmology, termed Language Enhanced Model for Eye (LEME). LEME was initially pre-trained on the Llama2 70B framework and further fine-tuned with a corpus of ~127,000 non-copyrighted training instances curated from ophthalmology-specific case reports, abstracts, and open-source study materials. We benchmarked LEME against eight other LLMs, namely, GPT-3.5, GPT-4, three Llama2 models (7B, 13B, 70B), PMC-LLAMA 13B, Meditron 70B, and EYE-Llama (another ophthalmology-specific LLM). Evaluations included four internal validation tasks: abstract completion, fill-in-the-blank, multiple-choice questions (MCQ), and short-answer QA. External validation tasks encompassed long-form QA, MCQ, patient EHR summarization, and clinical QA. Evaluation metrics included Rouge-L scores, accuracy, and expert evaluation of correctness, completeness, and readability. In internal validations, LEME consistently outperformed its counterparts, achieving Rouge-L scores of 0.20 in abstract completion (all p<0.05), 0.82 in fill-in-the-blank (all p<0.0001), and 0.22 in short-answer QA (all p<0.0001, except versus GPT-4). In external validations, LEME excelled in long-form QA with a Rouge-L of 0.19 (all p<0.0001), ranked second in MCQ accuracy (0.68; all p<0.0001), and scored highest in EHR summarization and clinical QA (ranging from 4.24 to 4.83 out of 5 for correctness, completeness, and readability). LEME's emphasis on robust fine-tuning and the use of non-copyrighted data represents a breakthrough in open-source ophthalmology-specific LLMs, offering the potential to revolutionize execution of clinical tasks while democratizing research collaboration.