Goto

Collaborating Authors

 Purohit, Hemant


Exposing LLM Vulnerabilities: Adversarial Scam Detection and Performance

arXiv.org Artificial Intelligence

Can we trust Large Language Models (LLMs) to accurately predict scam? This paper investigates the vulnerabilities of LLMs when facing adversarial scam messages for the task of scam detection. We addressed this issue by creating a comprehensive dataset with fine-grained labels of scam messages, including both original and adversarial scam messages. The dataset extended traditional binary classes for the scam detection task into more nuanced scam types. Our analysis showed how adversarial examples took advantage of vulnerabilities of a LLM, leading to high misclassification rate. We evaluated the performance of LLMs on these adversarial scam messages and proposed strategies to improve their robustness.


ORIS: Online Active Learning Using Reinforcement Learning-based Inclusive Sampling for Robust Streaming Analytics System

arXiv.org Artificial Intelligence

Effective labeled data collection plays a critical role in developing and fine-tuning robust streaming analytics systems. However, continuously labeling documents to filter relevant information poses significant challenges like limited labeling budget or lack of high-quality labels. There is a need for efficient human-in-the-loop machine learning (HITL-ML) design to improve streaming analytics systems. One particular HITL- ML approach is online active learning, which involves iteratively selecting a small set of the most informative documents for labeling to enhance the ML model performance. The performance of such algorithms can get affected due to human errors in labeling. To address these challenges, we propose ORIS, a method to perform Online active learning using Reinforcement learning-based Inclusive Sampling of documents for labeling. ORIS aims to create a novel Deep Q-Network-based strategy to sample incoming documents that minimize human errors in labeling and enhance the ML model performance. We evaluate the ORIS method on emotion recognition tasks, and it outperforms traditional baselines in terms of both human labeling performance and the ML model performance.


Practitioner-Centric Approach for Early Incident Detection Using Crowdsourced Data for Emergency Services

arXiv.org Artificial Intelligence

Emergency response is highly dependent on the time of incident reporting. Unfortunately, the traditional approach to receiving incident reports (e.g., calling 911 in the USA) has time delays. Crowdsourcing platforms such as Waze provide an opportunity for early identification of incidents. However, detecting incidents from crowdsourced data streams is difficult due to the challenges of noise and uncertainty associated with such data. Further, simply optimizing over detection accuracy can compromise spatial-temporal localization of the inference, thereby making such approaches infeasible for real-world deployment. This paper presents a novel problem formulation and solution approach for practitioner-centered incident detection using crowdsourced data by using emergency response management as a case-study. The proposed approach CROME (Crowdsourced Multi-objective Event Detection) quantifies the relationship between the performance metrics of incident classification (e.g., F1 score) and the requirements of model practitioners (e.g., 1 km. radius for incident detection). First, we show how crowdsourced reports, ground-truth historical data, and other relevant determinants such as traffic and weather can be used together in a Convolutional Neural Network (CNN) architecture for early detection of emergency incidents. Then, we use a Pareto optimization-based approach to optimize the output of the CNN in tandem with practitioner-centric parameters to balance detection accuracy and spatial-temporal localization. Finally, we demonstrate the applicability of this approach using crowdsourced data from Waze and traffic accident reports from Nashville, TN, USA. Our experiments demonstrate that the proposed approach outperforms existing approaches in incident detection while simultaneously optimizing the needs for real-world deployment and usability.


Emergency Incident Detection from Crowdsourced Waze Data using Bayesian Information Fusion

arXiv.org Artificial Intelligence

The number of emergencies have increased over the years with the growth in urbanization. This pattern has overwhelmed the emergency services with limited resources and demands the optimization of response processes. It is partly due to traditional `reactive' approach of emergency services to collect data about incidents, where a source initiates a call to the emergency number (e.g., 911 in U.S.), delaying and limiting the potentially optimal response. Crowdsourcing platforms such as Waze provides an opportunity to develop a rapid, `proactive' approach to collect data about incidents through crowd-generated observational reports. However, the reliability of reporting sources and spatio-temporal uncertainty of the reported incidents challenge the design of such a proactive approach. Thus, this paper presents a novel method for emergency incident detection using noisy crowdsourced Waze data. We propose a principled computational framework based on Bayesian theory to model the uncertainty in the reliability of crowd-generated reports and their integration across space and time to detect incidents. Extensive experiments using data collected from Waze and the official reported incidents in Nashville, Tenessee in the U.S. show our method can outperform strong baselines for both F1-score and AUC. The application of this work provides an extensible framework to incorporate different noisy data sources for proactive incident detection to improve and optimize emergency response operations in our communities.


Diversity-Based Generalization for Neural Unsupervised Text Classification under Domain Shift

arXiv.org Machine Learning

Domain adaptation approaches seek to learn from a source domain and generalize it to an unseen target domain. At present, the state-of-the-art domain adaptation approaches for subjective text classification problems are semi-supervised; and use unlabeled target data along with labeled source data. In this paper, we propose a novel method for domain adaptation of single-task text classification problems based on a simple but effective idea of diversity-based generalization that does not require unlabeled target data. Diversity plays the role of promoting the model to better generalize and be indiscriminate towards domain shift by forcing the model not to rely on same features for prediction. We apply this concept on the most explainable component of neural networks, the attention layer. To generate sufficient diversity, we create a multi-head attention model and infuse a diversity constraint between the attention heads such that each head will learn differently. We further expand upon our model by tri-training and designing a procedure with an additional diversity constraint between the attention heads of the tri-trained classifiers. Extensive evaluation using the standard benchmark dataset of Amazon reviews and a newly constructed dataset of Crisis events shows that our fully unsupervised method matches with the competing semi-supervised baselines. Our results demonstrate that machine learning architectures that ensure sufficient diversity can generalize better; encouraging future research to design ubiquitously usable learning models without using unlabeled target data.


Multi-stage Deep Classifier Cascades for Open World Recognition

arXiv.org Machine Learning

At present, object recognition studies are mostly conducted in a closed lab setting with classes in test phase typically in training phase. However, real-world problem is far more challenging because: i) new classes unseen in the training phase can appear when predicting; ii) discriminative features need to evolve when new classes emerge in real time; and iii) instances in new classes may not follow the "independent and identically distributed" (iid) assumption. Most existing work only aims to detect the unknown classes and is incapable of continuing to learn newer classes. Although a few methods consider both detecting and including new classes, all are based on the predefined handcrafted features that cannot evolve and are out-of-date for characterizing emerging classes. Thus, to address the above challenges, we propose a novel generic end-to-end framework consisting of a dynamic cascade of classifiers that incrementally learn their dynamic and inherent features. The proposed method injects dynamic elements into the system by detecting instances from unknown classes, while at the same time incrementally updating the model to include the new classes. The resulting cascade tree grows by adding a new leaf node classifier once a new class is detected, and the discriminative features are updated via an end-to-end learning strategy. Experiments on two real-world datasets demonstrate that our proposed method outperforms existing state-of-the-art methods.


Real-Time Inference of User Types to Assist with More Inclusive Social Media Activism Campaigns

arXiv.org Artificial Intelligence

Social media provides a mechanism for people to engage with social causes across a range of issues. It also provides a strategic tool to those looking to advance a cause to exchange, promote or publicize their ideas. In such instances, AI can be either an asset if used appropriately or a barrier. One of the key issues for a workforce diversity campaign is to understand in real-time who is participating - specifically, whether the participants are individuals or organizations, and in case of individuals, whether they are male or female. In this paper, we present a study to demonstrate a case for AI for social good that develops a model to infer in real-time the different user types participating in a cause-driven hashtag campaign on Twitter, ILookLikeAnEngineer (ILLAE). A generic framework is devised to classify a Twitter user into three classes: organization, male and female in a real-time manner. The framework is tested against two datasets (ILLAE and a general dataset) and outperforms the baseline binary classifiers for categorizing organization/individual and male/female. The proposed model can be applied to future social cause-driven campaigns to get real-time insights on the macro-level social behavior of participants.


Reports on the 2015 AAAI Spring Symposium Series

AI Magazine

The AAAI 2015 Spring Symposium Series was held Monday through Wednesday, March 23-25, at Stanford University near Palo Alto, California. The titles of the seven symposia were Ambient Intelligence for Health and Cognitive Enhancement, Applied Computational Game Theory, Foundations of Autonomy and Its (Cyber) Threats: From Individuals to Interdependence, Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches, Logical Formalizations of Commonsense Reasoning, Socio-Technical Behavior Mining: From Data to Decisions, Structured Data for Humanitarian Technologies: Perfect Fit or Overkill?


Reports on the 2015 AAAI Spring Symposium Series

AI Magazine

The AAAI 2015 Spring Symposium Series was held Monday through Wednesday, March 23-25, at Stanford University near Palo Alto, California. The titles of the seven symposia were Ambient Intelligence for Health and Cognitive Enhancement, Applied Computational Game Theory, Foundations of Autonomy and Its (Cyber) Threats: From Individuals to Interdependence, Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches, Logical Formalizations of Commonsense Reasoning, Socio-Technical Behavior Mining: From Data to Decisions, Structured Data for Humanitarian Technologies: Perfect Fit or Overkill? and Turn-Taking and Coordination in Human-Machine Interaction.The highlights of each symposium are presented in this report.


On Understanding the Divergence of Online Social Group Discussion

AAAI Conferences

We study online social group dynamics based on how group members diverge in their online discussions. Previous studies mostly focused on the link structure to characterize social group dynamics, whereas the group behavior of content generation in discussions is not well understood. Particularly, we use Jensen-Shannon (JS) divergence to measure the divergence of topics in user-generated contents, and how it progresses over time. We study Twitter messages (tweets) in multiple real-world events (natural disasters and social activism) with different times and demographics. We also model structural and user features with guidance from two socio-psychological theories, social cohesion and social identity, to learn their implications on group discussion divergence. Those features show significant correlation with group discussion divergence. By leveraging them we are able to construct a classifier to predict the future increase or decrease in group discussion divergence, which achieves an area under the curve (AUC) of 0.84 and an F-1 score (harmonic mean of precision and recall) of 0.8. Our approach allows to systematically study collective diverging group behavior independent of group formation design. It can help to prioritize whom to engage with in communities for specific topics of needs during disaster response coordination, and for specific concerns and advocacy in the brand management.