Goto

Collaborating Authors

 Purbey, Jebish


1-800-SHARED-TASKS at RegNLP: Lexical Reranking of Semantic Retrieval (LeSeR) for Regulatory Question Answering

arXiv.org Artificial Intelligence

This paper presents the system description of our entry for the COLING 2025 RegNLP RIRAG (Regulatory Information Retrieval and Answer Generation) challenge, focusing on leveraging advanced information retrieval and answer generation techniques in regulatory domains. We experimented with a combination of embedding models, including Stella, BGE, CDE, and Mpnet, and leveraged fine-tuning and reranking for retrieving relevant documents in top ranks. We utilized a novel approach, LeSeR, which achieved competitive results with a recall@10 of 0.8201 and map@10 of 0.6655 for retrievals. This work highlights the transformative potential of natural language processing techniques in regulatory applications, offering insights into their capabilities for implementing a retrieval augmented generation system while identifying areas for future improvement in robustness and domain adaptation.


SeQwen at the Financial Misinformation Detection Challenge Task: Sequential Learning for Claim Verification and Explanation Generation in Financial Domains

arXiv.org Artificial Intelligence

This paper presents the system description of our entry for the COLING 2025 FMD challenge, focusing on misinformation detection in financial domains. We experimented with a combination of large language models, including Qwen, Mistral, and Gemma-2, and leveraged pre-processing and sequential learning for not only identifying fraudulent financial content but also generating coherent, and concise explanations that clarify the rationale behind the classifications. Our approach achieved competitive results with an F1-score of 0.8283 for classification, and ROUGE-1 of 0.7253 for explanations. This work highlights the transformative potential of LLMs in financial applications, offering insights into their capabilities for combating misinformation and enhancing transparency while identifying areas for future improvement in robustness and domain adaptation.


INCLUDE: Evaluating Multilingual Language Understanding with Regional Knowledge

arXiv.org Artificial Intelligence

The performance differential of large language models (LLM) between languages hinders their effective deployment in many regions, inhibiting the potential economic and societal value of generative AI tools in many communities. However, the development of functional LLMs in many languages (i.e., multilingual LLMs) is bottlenecked by the lack of high-quality evaluation resources in languages other than English. Moreover, current practices in multilingual benchmark construction often translate English resources, ignoring the regional and cultural knowledge of the environments in which multilingual systems would be used. In this work, we construct an evaluation suite of 197,243 QA pairs from local exam sources to measure the capabilities of multilingual LLMs in a variety of regional contexts. The rapid advancement of AI technologies underscores the importance of developing LLMs that are proficient across diverse linguistic and cultural contexts, ensuring fair and equitable performance for stakeholders from various language groups. However, the lack of high-quality evaluation benchmarks in many languages discourages practitioners from training multilingual LLMs to meet this challenge. This evaluation gap limits the effective deployment of LLMs for many regions, exacerbates digital divides, and inhibits the economic and societal value of AI tools in many underserved communities. The source of this gap is the multitude of challenges in evaluating LLMs for multilingual contexts. First, at a meta-level, the majority of benchmarks for LLMs are only in English (Hendrycks et al., 2020, inter alia). Technical challenges also abound due to the manner in which multilingual datasets are often collected. Certain datasets are constructed using manually applied templates, resulting in low prompt and completion diversity (Muennighoff et al., 2022). Many more are composed of translations from high-resource languages (e.g., English; Holtermann et al., 2024; Myung et al., 2024; Lai et al., 2023; Foroutan et al., 2023). These datasets often contain errors (Ponti et al., 2020; Plaza et al., 2024) and create translationese artifacts (Vanmassenhove et al., 2021; Hartung et al., 2023; Savoldi et al., 2021; Ji et al., 2023).


1-800-SHARED-TASKS @ NLU of Devanagari Script Languages: Detection of Language, Hate Speech, and Targets using LLMs

arXiv.org Artificial Intelligence

This paper presents a detailed system description of our entry for the CHiPSAL 2025 shared task, focusing on language detection, hate speech identification, and target detection in Devanagari script languages. We experimented with a combination of large language models and their ensembles, including MuRIL, IndicBERT, and Gemma-2, and leveraged unique techniques like focal loss to address challenges in the natural understanding of Devanagari languages, such as multilingual processing and class imbalance. Our approach achieved competitive results across all tasks: F1 of 0.9980, 0.7652, and 0.6804 for Sub-tasks A, B, and C respectively. This work provides insights into the effectiveness of transformer models in tasks with domain-specific and linguistic challenges, as well as areas for potential improvement in future iterations.