Pukdee, Rattana
Bayesian Neural Networks with Domain Knowledge Priors
Sam, Dylan, Pukdee, Rattana, Jeong, Daniel P., Byun, Yewon, Kolter, J. Zico
Bayesian neural networks (BNNs) have recently gained popularity due to their ability to quantify model uncertainty. However, specifying a prior for BNNs that captures relevant domain knowledge is often extremely challenging. In this work, we propose a framework for integrating general forms of domain knowledge (i.e., any knowledge that can be represented by a loss function) into a BNN prior through variational inference, while enabling computationally efficient posterior inference and sampling. Specifically, our approach results in a prior over neural network weights that assigns high probability mass to models that better align with our domain knowledge, leading to posterior samples that also exhibit this behavior. We show that BNNs using our proposed domain knowledge priors outperform those with standard priors (e.g., isotropic Gaussian, Gaussian process), successfully incorporating diverse types of prior information such as fairness, physics rules, and healthcare knowledge and achieving better predictive performance. We also present techniques for transferring the learned priors across different model architectures, demonstrating their broad utility across various settings.
Spectrally Transformed Kernel Regression
Zhai, Runtian, Pukdee, Rattana, Jin, Roger, Balcan, Maria-Florina, Ravikumar, Pradeep
Unlabeled data is a key component of modern machine learning. In general, the role of unlabeled data is to impose a form of smoothness, usually from the similarity information encoded in a base kernel, such as the $\epsilon$-neighbor kernel or the adjacency matrix of a graph. This work revisits the classical idea of spectrally transformed kernel regression (STKR), and provides a new class of general and scalable STKR estimators able to leverage unlabeled data. Intuitively, via spectral transformation, STKR exploits the data distribution for which unlabeled data can provide additional information. First, we show that STKR is a principled and general approach, by characterizing a universal type of "target smoothness", and proving that any sufficiently smooth function can be learned by STKR. Second, we provide scalable STKR implementations for the inductive setting and a general transformation function, while prior work is mostly limited to the transductive setting. Third, we derive statistical guarantees for two scenarios: STKR with a known polynomial transformation, and STKR with kernel PCA when the transformation is unknown. Overall, we believe that this work helps deepen our understanding of how to work with unlabeled data, and its generality makes it easier to inspire new methods.
Learning with Explanation Constraints
Pukdee, Rattana, Sam, Dylan, Kolter, J. Zico, Balcan, Maria-Florina, Ravikumar, Pradeep
As larger deep learning models are hard to interpret, there has been a recent focus on generating explanations of these black-box models. In contrast, we may have apriori explanations of how models should behave. In this paper, we formalize this notion as learning from explanation constraints and provide a learning theoretic framework to analyze how such explanations can improve the learning of our models. One may naturally ask, "When would these explanations be helpful?" Our first key contribution addresses this question via a class of models that satisfies these explanation constraints in expectation over new data. We provide a characterization of the benefits of these models (in terms of the reduction of their Rademacher complexities) for a canonical class of explanations given by gradient information in the settings of both linear models and two layer neural networks. In addition, we provide an algorithmic solution for our framework, via a variational approximation that achieves better performance and satisfies these constraints more frequently, when compared to simpler augmented Lagrangian methods to incorporate these explanations. We demonstrate the benefits of our approach over a large array of synthetic and real-world experiments.
Reliable learning in challenging environments
Balcan, Maria-Florina, Hanneke, Steve, Pukdee, Rattana, Sharma, Dravyansh
The problem of designing learners that provide guarantees that their predictions are provably correct is of increasing importance in machine learning. However, learning theoretic guarantees have only been considered in very specific settings. In this work, we consider the design and analysis of reliable learners in challenging test-time environments as encountered in modern machine learning problems: namely `adversarial' test-time attacks (in several variations) and `natural' distribution shifts. In this work, we provide a reliable learner with provably optimal guarantees in such settings. We discuss computationally feasible implementations of the learner and further show that our algorithm achieves strong positive performance guarantees on several natural examples: for example, linear separators under log-concave distributions or smooth boundary classifiers under smooth probability distributions.
Label Propagation with Weak Supervision
Pukdee, Rattana, Sam, Dylan, Balcan, Maria-Florina, Ravikumar, Pradeep
Semi-supervised learning and weakly supervised learning are important paradigms that aim to reduce the growing demand for labeled data in current machine learning applications. In this paper, we introduce a novel analysis of the classical label propagation algorithm (LPA) (Zhu & Ghahramani, 2002) that moreover takes advantage of useful prior information, specifically probabilistic hypothesized labels on the unlabeled data. We provide an error bound that exploits both the local geometric properties of the underlying graph and the quality of the prior information. We also propose a framework to incorporate multiple sources of noisy information. In particular, we consider the setting of weak supervision, where our sources of information are weak labelers. We demonstrate the ability of our approach on multiple benchmark weakly supervised classification tasks, showing improvements upon existing semi-supervised and weakly supervised methods. High-dimensional machine learning models require large labeled datasets for good performance and generalization. In the paradigm of semi-supervised learning, we look to overcome the bottleneck of labeled data by leveraging large amounts of unlabeled data and assumptions on how the target predictor behaves over the unlabeled samples. In this work, we focus on the classical semi-supervised approach of label propagation (LPA) (Zhu & Ghahramani, 2002; Zhou et al., 2003).
Nash Equilibria and Pitfalls of Adversarial Training in Adversarial Robustness Games
Balcan, Maria-Florina, Pukdee, Rattana, Ravikumar, Pradeep, Zhang, Hongyang
Adversarial training is a standard technique for training adversarially robust models. In this paper, we study adversarial training as an alternating best-response strategy in a 2-player zero-sum game. We prove that even in a simple scenario of a linear classifier and a statistical model that abstracts robust vs. non-robust features, the alternating best response strategy of such game may not converge. On the other hand, a unique pure Nash equilibrium of the game exists and is provably robust. We support our theoretical results with experiments, showing the non-convergence of adversarial training and the robustness of Nash equilibrium.
Improving Transformation Invariance in Contrastive Representation Learning
Foster, Adam, Pukdee, Rattana, Rainforth, Tom
We propose methods to strengthen the invariance properties of representations obtained by contrastive learning. While existing approaches implicitly induce a degree of invariance as representations are learned, we look to more directly enforce invariance in the encoding process. To this end, we first introduce a training objective for contrastive learning that uses a novel regularizer to control how the representation changes under transformation. We show that representations trained with this objective perform better on downstream tasks and are more robust to the introduction of nuisance transformations at test time. Second, we propose a change to how test time representations are generated by introducing a feature averaging approach that combines encodings from multiple transformations of the original input, finding that this leads to across the board performance gains. Finally, we introduce the novel Spirograph dataset to explore our ideas in the context of a differentiable generative process with multiple downstream tasks, showing that our techniques for learning invariance are highly beneficial.