Goto

Collaborating Authors

 Provan, Gregory


Diagnosing Analogue Linear Systems Using Dynamic Topological Reconfiguration

AAAI Conferences

Fault diagnosis of analogue linear systems poses many challenges, such as the size of the search space that must be explored and the possibility of simulation instabilities introduced by particular fault classes. We study a novel algorithm that addresses both problems. This algorithm dynamically modifies the simulation model during diagnosis by pruning parametrized components that cause discontinuity in the model. We provide a theoretical framework for predicting the speedups, which depends on the topology of the model. We empirically validate the theoretical predictions through extensive experimentation on a benchmark of circuits.


Machine-Learning-Based Circuit Synthesis

AAAI Conferences

Multi-level logic synthesis is a problem of immense practical significance, and is a key to developing circuits that optimize a number of parameters, such as depth, energy dissipation, reliability, etc. The problem can be defined as the task of taking a collection of components from which one wants to synthesize a circuit that optimizes a particular objective function. This problem is computationally hard, and there are very few automated approaches for its solution. To solve this problem we propose an algorithm, called Circuit-Decomposition Engine (CDE), that is based on learning decision trees, and uses a greedy approach for function learning. We empirically demonstrate that CDE, when given a library of different component types, can learn the function of Disjunctive Normal Form (DNF) Boolean representations and synthesize circuit structure using the input library. We compare the structure of the synthesized circuits with that of well-known circuits using a range of circuit similarity metrics.


Exploring the Duality in Conflict-Directed Model-Based Diagnosis

AAAI Conferences

A model-based diagnosis problem occurs when an observation is inconsistent with the assumption that the diagnosed system is not faulty. The task of a diagnosis engine is to compute diagnoses, which are assumptions on the health of components in the diagnosed system that explain the observation. In this paper, we extend Reiter's well-known theory of diagnosis by exploiting the duality of the relation between conflicts and diagnoses. This duality means that a diagnosis is a hitting set of conflicts, but a conflict is also a hitting set of diagnoses. We use this property to interleave the search for diagnoses and conflicts: a set of conflicts can guide the search for diagnosis, and the computed diagnoses can guide the search for more conflicts. We provide the formal basis for this dual conflict-diagnosis relation, and propose a novel diagnosis algorithm that exploits this duality. Experimental results show that the new algorithm is able to find a minimal cardinality diagnosis faster than the well-known Conflict-Directed A*.


Stochastic Model Predictive Controller for the Integration of Building Use and Temperature Regulation

AAAI Conferences

The aim of a modern Building Automation System (BAS) is to enhance interactive control strategies for energy efficiency and user comfort. In this context, we develop a novel control algorithm that uses a stochastic building occupancy model to improve mean energy efficiency while minimizing expected discomfort. We compare by simulation our Stochastic Model Predictive Control (SMPC) strategy to the standard heating control method to empirically demonstrate a 4.3% reduction in energy use and 38.3% reduction in expected discomfort.


Reports of the AAAI 2010 Conference Workshops

AI Magazine

The AAAI-10 Workshop program was held Sunday and Monday, July 11–12, 2010 at the Westin Peachtree Plaza in Atlanta, Georgia. The AAAI-10 workshop program included 13 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Fun, Bridging the Gap between Task and Motion Planning, Collaboratively-Built Knowledge Sources and Artificial Intelligence, Goal-Directed Autonomy, Intelligent Security, Interactive Decision Theory and Game Theory, Metacognition for Robust Social Systems, Model Checking and Artificial Intelligence, Neural-Symbolic Learning and Reasoning, Plan, Activity, and Intent Recognition, Statistical Relational AI, Visual Representations and Reasoning, and Abstraction, Reformulation, and Approximation. This article presents short summaries of those events.


Reports of the AAAI 2010 Conference Workshops

AI Magazine

The AAAI-10 Workshop program was held Sunday and Monday, July 11–12, 2010 at the Westin Peachtree Plaza in Atlanta, Georgia. The AAAI-10 workshop program included 13 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Fun, Bridging the Gap between Task and Motion Planning, Collaboratively-Built Knowledge Sources and Artificial Intelligence, Goal-Directed Autonomy, Intelligent Security, Interactive Decision Theory and Game Theory, Metacognition for Robust Social Systems, Model Checking and Artificial Intelligence, Neural-Symbolic Learning and Reasoning, Plan, Activity, and Intent Recognition, Statistical Relational AI, Visual Representations and Reasoning, and Abstraction, Reformulation, and Approximation. This article presents short summaries of those events.