Prosser, Patrick
A General Framework for Stable Roommates Problems using Answer Set Programming
Erdem, Esra, Fidan, Muge, Manlove, David, Prosser, Patrick
The Stable Roommates problem (SR) is characterized by the preferences of agents over other agents as roommates: each agent ranks all others in strict order of preference. A solution to SR is then a partition of the agents into pairs so that each pair shares a room, and there is no pair of agents that would block this matching (i.e., who prefers the other to their roommate in the matching). There are interesting variations of SR that are motivated by applications (e.g., the preference lists may be incomplete (SRI) and involve ties (SRTI)), and that try to find a more fair solution (e.g., Egalitarian SR). Unlike the Stable Marriage problem, every SR instance is not guaranteed to have a solution. For that reason, there are also variations of SR that try to find a good-enough solution (e.g., Almost SR). Most of these variations are NP-hard. We introduce a formal framework, called SRTI-ASP, utilizing the logic programming paradigm Answer Set Programming, that is provable and general enough to solve many of such variations of SR. Our empirical analysis shows that SRTI-ASP is also promising for applications. This paper is under consideration for acceptance in TPLP.
When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases
McCreesh, Ciaran, Prosser, Patrick, Solnon, Christine, Trimble, James
The subgraph isomorphism problem involves deciding whether a copy of a pattern graph occurs inside a larger target graph. The non-induced version allows extra edges in the target, whilst the induced version does not. Although both variants are NP-complete, algorithms inspired by constraint programming can operate comfortably on many real-world problem instances with thousands of vertices. However, they cannot handle arbitrary instances of this size. We show how to generate "really hard" random instances for subgraph isomorphism problems, which are computationally challenging with a couple of hundred vertices in the target, and only twenty pattern vertices. For the non-induced version of the problem, these instances lie on a satisfiable / unsatisfiable phase transition, whose location we can predict; for the induced variant, much richer behaviour is observed, and constrainedness gives a better measure of difficulty than does proximity to a phase transition. These results have practical consequences: we explain why the widely researched "filter / verify" indexing technique used in graph databases is founded upon a misunderstanding of the empirical hardness of NP-complete problems, and cannot be beneficial when paired with any reasonable subgraph isomorphism algorithm.
The Ultrametric Constraint and its Application to Phylogenetics
Moore, Neil C. A., Prosser, Patrick
A phylogenetic tree shows the evolutionary relationships among species. Internal nodes of the tree represent speciation events and leaf nodes correspond to species. A goal of phylogenetics is to combine such trees into larger trees, called supertrees, whilst respecting the relationships in the original trees. A rooted tree exhibits an ultrametric property; that is, for any three leaves of the tree it must be that one pair has a deeper most recent common ancestor than the other pairs, or that all three have the same most recent common ancestor. This inspires a constraint programming encoding for rooted trees. We present an efficient constraint that enforces the ultrametric property over a symmetric array of constrained integer variables, with the inevitable property that the lower bounds of any three variables are mutually supportive. We show that this allows an efficient constraint-based solution to the supertree construction problem. We demonstrate that the versatility of constraint programming can be exploited to allow solutions to variants of the supertree construction problem.
Breaking Symmetries in Graph Representation
Codish, Michael (Ben-Gurion University of the Negev) | Miller, Alice (University of Glasgow) | Prosser, Patrick (University of Glasgow) | Stuckey, Peter James (University of Melbourne)
There are many complex combinatorial problems which involve searching for an undirected graph satisfying a certain property. These problems are often highly challenging because of the large number of isomorphic representations of a possible solution. In this paper we introduce novel, effective and compact, symmetry breaking constraints for undirected graph search. While incomplete, these prove highly beneficial in pruning the search for a graph. We illustrate the application of symmetry breaking in graph representation to resolve several open instances in extremal graph theory.