Prior, Fred
Environment Scan of Generative AI Infrastructure for Clinical and Translational Science
Idnay, Betina, Xu, Zihan, Adams, William G., Adibuzzaman, Mohammad, Anderson, Nicholas R., Bahroos, Neil, Bell, Douglas S., Bumgardner, Cody, Campion, Thomas, Castro, Mario, Cimino, James J., Cohen, I. Glenn, Dorr, David, Elkin, Peter L, Fan, Jungwei W., Ferris, Todd, Foran, David J., Hanauer, David, Hogarth, Mike, Huang, Kun, Kalpathy-Cramer, Jayashree, Kandpal, Manoj, Karnik, Niranjan S., Katoch, Avnish, Lai, Albert M., Lambert, Christophe G., Li, Lang, Lindsell, Christopher, Liu, Jinze, Lu, Zhiyong, Luo, Yuan, McGarvey, Peter, Mendonca, Eneida A., Mirhaji, Parsa, Murphy, Shawn, Osborne, John D., Paschalidis, Ioannis C., Harris, Paul A., Prior, Fred, Shaheen, Nicholas J., Shara, Nawar, Sim, Ida, Tachinardi, Umberto, Waitman, Lemuel R., Wright, Rosalind J., Zai, Adrian H., Zheng, Kai, Lee, Sandra Soo-Jin, Malin, Bradley A., Natarajan, Karthik, Price, W. Nicholson II, Zhang, Rui, Zhang, Yiye, Xu, Hua, Bian, Jiang, Weng, Chunhua, Peng, Yifan
This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions supported by the Clinical and Translational Science Award (CTSA) Program led by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) at the United States. With the rapid advancement of GenAI technologies, including large language models (LLMs), healthcare institutions face unprecedented opportunities and challenges. This research explores the current status of GenAI integration, focusing on stakeholder roles, governance structures, and ethical considerations by administering a survey among leaders of health institutions (i.e., representing academic medical centers and health systems) to assess the institutional readiness and approach towards GenAI adoption. Key findings indicate a diverse range of institutional strategies, with most organizations in the experimental phase of GenAI deployment. The study highlights significant variations in governance models, with a strong preference for centralized decision-making but notable gaps in workforce training and ethical oversight. Moreover, the results underscore the need for a more coordinated approach to GenAI governance, emphasizing collaboration among senior leaders, clinicians, information technology staff, and researchers. Our analysis also reveals concerns regarding GenAI bias, data security, and stakeholder trust, which must be addressed to ensure the ethical and effective implementation of GenAI technologies. This study offers valuable insights into the challenges and opportunities of GenAI integration in healthcare, providing a roadmap for institutions aiming to leverage GenAI for improved quality of care and operational efficiency.
MAMA-MIA: A Large-Scale Multi-Center Breast Cancer DCE-MRI Benchmark Dataset with Expert Segmentations
Garrucho, Lidia, Reidel, Claire-Anne, Kushibar, Kaisar, Joshi, Smriti, Osuala, Richard, Tsirikoglou, Apostolia, Bobowicz, Maciej, del Riego, Javier, Catanese, Alessandro, Gwoลบdziewicz, Katarzyna, Cosaka, Maria-Laura, Abo-Elhoda, Pasant M., Tantawy, Sara W., Sakrana, Shorouq S., Shawky-Abdelfatah, Norhan O., Abdo-Salem, Amr Muhammad, Kozana, Androniki, Divjak, Eugen, Ivanac, Gordana, Nikiforaki, Katerina, Klontzas, Michail E., Garcรญa-Dosdรก, Rosa, Gulsun-Akpinar, Meltem, Lafcฤฑ, Oฤuz, Mann, Ritse, Martรญn-Isla, Carlos, Prior, Fred, Marias, Kostas, Starmans, Martijn P. A., Strand, Fredrik, Dรญaz, Oliver, Igual, Laura, Lekadir, Karim
Current research in breast cancer Magnetic Resonance Imaging (MRI), especially with Artificial Intelligence (AI), faces challenges due to the lack of expert segmentations. To address this, we introduce the MAMA-MIA dataset, comprising 1506 multi-center dynamic contrast-enhanced MRI cases with expert segmentations of primary tumors and non-mass enhancement areas. These cases were sourced from four publicly available collections in The Cancer Imaging Archive (TCIA). Initially, we trained a deep learning model to automatically segment the cases, generating preliminary segmentations that significantly reduced expert segmentation time. Sixteen experts, averaging 9 years of experience in breast cancer, then corrected these segmentations, resulting in the final expert segmentations. Additionally, two radiologists conducted a visual inspection of the automatic segmentations to support future quality control studies. Alongside the expert segmentations, we provide 49 harmonized demographic and clinical variables and the pretrained weights of the well-known nnUNet architecture trained using the DCE-MRI full-images and expert segmentations. This dataset aims to accelerate the development and benchmarking of deep learning models and foster innovation in breast cancer diagnostics and treatment planning.
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Lekadir, Karim, Feragen, Aasa, Fofanah, Abdul Joseph, Frangi, Alejandro F, Buyx, Alena, Emelie, Anais, Lara, Andrea, Porras, Antonio R, Chan, An-Wen, Navarro, Arcadi, Glocker, Ben, Botwe, Benard O, Khanal, Bishesh, Beger, Brigit, Wu, Carol C, Cintas, Celia, Langlotz, Curtis P, Rueckert, Daniel, Mzurikwao, Deogratias, Fotiadis, Dimitrios I, Zhussupov, Doszhan, Ferrante, Enzo, Meijering, Erik, Weicken, Eva, Gonzรกlez, Fabio A, Asselbergs, Folkert W, Prior, Fred, Krestin, Gabriel P, Collins, Gary, Tegenaw, Geletaw S, Kaissis, Georgios, Misuraca, Gianluca, Tsakou, Gianna, Dwivedi, Girish, Kondylakis, Haridimos, Jayakody, Harsha, Woodruf, Henry C, Aerts, Hugo JWL, Walsh, Ian, Chouvarda, Ioanna, Buvat, Irรจne, Rekik, Islem, Duncan, James, Kalpathy-Cramer, Jayashree, Zahir, Jihad, Park, Jinah, Mongan, John, Gichoya, Judy W, Schnabel, Julia A, Kushibar, Kaisar, Riklund, Katrine, Mori, Kensaku, Marias, Kostas, Amugongo, Lameck M, Fromont, Lauren A, Maier-Hein, Lena, Alberich, Leonor Cerdรก, Rittner, Leticia, Phiri, Lighton, Marrakchi-Kacem, Linda, Donoso-Bach, Lluรญs, Martรญ-Bonmatรญ, Luis, Cardoso, M Jorge, Bobowicz, Maciej, Shabani, Mahsa, Tsiknakis, Manolis, Zuluaga, Maria A, Bielikova, Maria, Fritzsche, Marie-Christine, Linguraru, Marius George, Wenzel, Markus, De Bruijne, Marleen, Tolsgaard, Martin G, Ghassemi, Marzyeh, Ashrafuzzaman, Md, Goisauf, Melanie, Yaqub, Mohammad, Ammar, Mohammed, Abadรญa, Mรณnica Cano, Mahmoud, Mukhtar M E, Elattar, Mustafa, Rieke, Nicola, Papanikolaou, Nikolaos, Lazrak, Noussair, Dรญaz, Oliver, Salvado, Olivier, Pujol, Oriol, Sall, Ousmane, Guevara, Pamela, Gordebeke, Peter, Lambin, Philippe, Brown, Pieta, Abolmaesumi, Purang, Dou, Qi, Lu, Qinghua, Osuala, Richard, Nakasi, Rose, Zhou, S Kevin, Napel, Sandy, Colantonio, Sara, Albarqouni, Shadi, Joshi, Smriti, Carter, Stacy, Klein, Stefan, Petersen, Steffen E, Aussรณ, Susanna, Awate, Suyash, Raviv, Tammy Riklin, Cook, Tessa, Mutsvangwa, Tinashe E M, Rogers, Wendy A, Niessen, Wiro J, Puig-Bosch, Xรจnia, Zeng, Yi, Mohammed, Yunusa G, Aquino, Yves Saint James, Salahuddin, Zohaib, Starmans, Martijn P A
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI.
medigan: a Python library of pretrained generative models for medical image synthesis
Osuala, Richard, Skorupko, Grzegorz, Lazrak, Noussair, Garrucho, Lidia, Garcรญa, Eloy, Joshi, Smriti, Jouide, Socayna, Rutherford, Michael, Prior, Fred, Kushibar, Kaisar, Diaz, Oliver, Lekadir, Karim
Synthetic data generated by generative models can enhance the performance and capabilities of data-hungry deep learning models in medical imaging. However, there is (1) limited availability of (synthetic) datasets and (2) generative models are complex to train, which hinders their adoption in research and clinical applications. To reduce this entry barrier, we propose medigan, a one-stop shop for pretrained generative models implemented as an open-source framework-agnostic Python library. medigan allows researchers and developers to create, increase, and domain-adapt their training data in just a few lines of code. Guided by design decisions based on gathered end-user requirements, we implement medigan based on modular components for generative model (i) execution, (ii) visualisation, (iii) search & ranking, and (iv) contribution. The library's scalability and design is demonstrated by its growing number of integrated and readily-usable pretrained generative models consisting of 21 models utilising 9 different Generative Adversarial Network architectures trained on 11 datasets from 4 domains, namely, mammography, endoscopy, x-ray, and MRI. Furthermore, 3 applications of medigan are analysed in this work, which include (a) enabling community-wide sharing of restricted data, (b) investigating generative model evaluation metrics, and (c) improving clinical downstream tasks. In (b), extending on common medical image synthesis assessment and reporting standards, we show Fr\'echet Inception Distance variability based on image normalisation and radiology-specific feature extraction.
Highly accurate model for prediction of lung nodule malignancy with CT scans
Causey, Jason, Zhang, Junyu, Ma, Shiqian, Jiang, Bo, Qualls, Jake, Politte, David G., Prior, Fred, Zhang, Shuzhong, Huang, Xiuzhen
Computed tomography (CT) examinations are commonly used to predict lung nodule malignancy in patients, which are shown to improve noninvasive early diagnosis of lung cancer. It remains challenging for computational approaches to achieve performance comparable to experienced radiologists. Here we present NoduleX, a systematic approach to predict lung nodule malignancy from CT data, based on deep learning convolutional neural networks (CNN). For training and validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort. All nodules were identified and classified by four experienced thoracic radiologists who participated in the LIDC project. NoduleX achieves high accuracy for nodule malignancy classification, with an AUC of ~0.99. This is commensurate with the analysis of the dataset by experienced radiologists. Our approach, NoduleX, provides an effective framework for highly accurate nodule malignancy prediction with the model trained on a large patient population. Our results are replicable with software available at http://bioinformatics.astate.edu/NoduleX.