Goto

Collaborating Authors

 Price, David


Implementation and Comparison of Solution Methods for Decision Processes with Non-Markovian Rewards

arXiv.org Artificial Intelligence

This paper examines a number of solution methods for decision processes with non-Markovian rewards (NMRDPs). They all exploit a temporal logic specification of the reward function to automatically translate the NMRDP into an equivalent Markov decision process (MDP) amenable to well-known MDP solution methods. They differ however in the representation of the target MDP and the class of MDP solution methods to which they are suited. As a result, they adopt different temporal logics and different translations. Unfortunately, no implementation of these methods nor experimental let alone comparative results have ever been reported. This paper is the first step towards filling this gap. We describe an integrated system for solving NMRDPs which implements these methods and several variants under a common interface; we use it to compare the various approaches and identify the problem features favoring one over the other.


Pairwise Neural Network Classifiers with Probabilistic Outputs

Neural Information Processing Systems

Multi-class classification problems can be efficiently solved by partitioning the original problem into sub-problems involving only two classes: for each pair of classes, a (potentially small) neural network is trained using only the data of these two classes. We show how to combine the outputs of the two-class neural networks in order to obtain posterior probabilities for the class decisions. The resulting probabilistic pairwise classifier is part of a handwriting recognition system which is currently applied to check reading. We present results on real world data bases and show that, from a practical point of view, these results compare favorably to other neural network approaches.


Pairwise Neural Network Classifiers with Probabilistic Outputs

Neural Information Processing Systems

Multi-class classification problems can be efficiently solved by partitioning the original problem into sub-problems involving only two classes: for each pair of classes, a (potentially small) neural network is trained using only the data of these two classes. We show how to combine the outputs of the two-class neural networks in order to obtain posterior probabilities for the class decisions. The resulting probabilistic pairwise classifier is part of a handwriting recognition system which is currently applied to check reading. We present results on real world data bases and show that, from a practical point of view, these results compare favorably to other neural network approaches.