Prendes, Jorge
Study on spike-and-wave detection in epileptic signals using t-location-scale distribution and the K-nearest neighbors classifier
Quintero-Rincón, Antonio, Prendes, Jorge, Muro, Valeria, D'Giano, Carlos
Pattern classification in electroencephalography (EEG) signals is an important problem in biomedical engineering since it enables the detection of brain activity, particularly the early detection of epileptic seizures. In this paper, we propose a k-nearest neighbors classification for epileptic EEG signals based on a t-location-scale statistical representation to detect spike-and-waves. The proposed approach is demonstrated on a real dataset containing both spike-and-wave events and normal brain function signals, where our performance is evaluated in terms of classification accuracy, sensitivity, and specificity.
A novel spike-and-wave automatic detection in EEG signals
Quintero-Rincón, Antonio, Muro, Valeria, D'Giano, Carlos, Prendes, Jorge, Batatia, Hadj
Spike-and-wave discharge (SWD) pattern classification in electroencephalography (EEG) signals is a key problem in signal processing. It is particularly important to develop a SWD automatic detection method in long-term EEG recordings since the task of marking the patters manually is time consuming, difficult and error-prone. This paper presents a new detection method with a low computational complexity that can be easily trained if standard medical protocols are respected. The detection procedure is as follows: First, each EEG signal is divided into several time segments and for each time segment, the Morlet 1-D decomposition is applied. Then three parameters are extracted from the wavelet coefficients of each segment: scale (using a generalized Gaussian statistical model), variance and median. This is followed by a k-nearest neighbors (k-NN) classifier to detect the spike-and-wave pattern in each EEG channel from these three parameters. A total of 106 spike-and-wave and 106 non-spike-and-wave were used for training, while 69 new annotated EEG segments from six subjects were used for classification. In these circumstances, the proposed methodology achieved 100% accuracy. These results generate new research opportunities for the underlying causes of the so-called absence epilepsy in long-term EEG recordings.