Pratt, Sarah
Can Language Models Use Forecasting Strategies?
Pratt, Sarah, Blumberg, Seth, Carolino, Pietro Kreitlon, Morris, Meredith Ringel
Advances in deep learning systems have allowed large models to match or surpass human accuracy on a number of skills such as image classification, basic programming, and standardized test taking. As the performance of the most capable models begin to saturate on tasks where humans already achieve high accuracy, it becomes necessary to benchmark models on increasingly complex abilities. One such task is forecasting the future outcome of events. In this work we describe experiments using a novel dataset of real world events and associated human predictions, an evaluation metric to measure forecasting ability, and the accuracy of a number of different LLM based forecasting designs on the provided dataset. Additionally, we analyze the performance of the LLM forecasters against human predictions and find that models still struggle to make accurate predictions about the future. Our follow-up experiments indicate this is likely due to models' tendency to guess that most events are unlikely to occur (which tends to be true for many prediction datasets, but does not reflect actual forecasting abilities). We reflect on next steps for developing a systematic and reliable approach to studying LLM forecasting.
What does a platypus look like? Generating customized prompts for zero-shot image classification
Pratt, Sarah, Covert, Ian, Liu, Rosanne, Farhadi, Ali
Open-vocabulary models are a promising new paradigm for image classification. Unlike traditional classification models, open-vocabulary models classify among any arbitrary set of categories specified with natural language during inference. This natural language, called "prompts", typically consists of a set of hand-written templates (e.g., "a photo of a {}") which are completed with each of the category names. This work introduces a simple method to generate higher accuracy prompts, without relying on any explicit knowledge of the task domain and with far fewer hand-constructed sentences. To achieve this, we combine open-vocabulary models with large language models (LLMs) to create Customized Prompts via Language models (CuPL, pronounced "couple"). In particular, we leverage the knowledge contained in LLMs in order to generate many descriptive sentences that contain important discriminating characteristics of the image categories. This allows the model to place a greater importance on these regions in the image when making predictions. We find that this straightforward and general approach improves accuracy on a range of zero-shot image classification benchmarks, including over one percentage point gain on ImageNet. Finally, this simple baseline requires no additional training and remains completely zero-shot. Code available at https://github.com/sarahpratt/CuPL.
DataComp: In search of the next generation of multimodal datasets
Gadre, Samir Yitzhak, Ilharco, Gabriel, Fang, Alex, Hayase, Jonathan, Smyrnis, Georgios, Nguyen, Thao, Marten, Ryan, Wortsman, Mitchell, Ghosh, Dhruba, Zhang, Jieyu, Orgad, Eyal, Entezari, Rahim, Daras, Giannis, Pratt, Sarah, Ramanujan, Vivek, Bitton, Yonatan, Marathe, Kalyani, Mussmann, Stephen, Vencu, Richard, Cherti, Mehdi, Krishna, Ranjay, Koh, Pang Wei, Saukh, Olga, Ratner, Alexander, Song, Shuran, Hajishirzi, Hannaneh, Farhadi, Ali, Beaumont, Romain, Oh, Sewoong, Dimakis, Alex, Jitsev, Jenia, Carmon, Yair, Shankar, Vaishaal, Schmidt, Ludwig
Multimodal datasets are a critical component in recent breakthroughs such as Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms. To address this shortcoming in the ML ecosystem, we introduce DataComp, a testbed for dataset experiments centered around a new candidate pool of 12.8 billion image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing the resulting model on 38 downstream test sets. Our benchmark consists of multiple compute scales spanning four orders of magnitude, which enables the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow leads to better training sets. In particular, our best baseline, DataComp-1B, enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet, outperforming OpenAI's CLIP ViT-L/14 by 3.7 percentage points while using the same training procedure and compute. We release DataComp and all accompanying code at www.datacomp.ai.
The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents
Pratt, Sarah, Weihs, Luca, Farhadi, Ali
The last few years have witnessed substantial progress in the field of embodied AI where artificial agents, mirroring biological counterparts, are now able to learn from interaction to accomplish complex tasks. Despite this success, biological organisms still hold one large advantage over these simulated agents: adaptation. While both living and simulated agents make decisions to achieve goals (strategy), biological organisms have evolved to understand their environment (sensing) and respond to it (physiology). The net gain of these factors depends on the environment, and organisms have adapted accordingly. For example, in a low vision aquatic environment some fish have evolved specific neurons which offer a predictable, but incredibly rapid, strategy to escape from predators. Mammals have lost these reactive systems, but they have a much larger fields of view and brain circuitry capable of understanding many future possibilities. While traditional embodied agents manipulate an environment to best achieve a goal, we argue for an introspective agent, which considers its own abilities in the context of its environment. We show that different environments yield vastly different optimal designs, and increasing long-term planning is often far less beneficial than other improvements, such as increased physical ability. We present these findings to broaden the definition of improvement in embodied AI passed increasingly complex models. Just as in nature, we hope to reframe strategy as one tool, among many, to succeed in an environment. Code is available at: https://github.com/sarahpratt/introspective.