Goto

Collaborating Authors

 Pratapa, Adithya


Scaling Multi-Document Event Summarization: Evaluating Compression vs. Full-Text Approaches

arXiv.org Artificial Intelligence

Automatically summarizing large text collections is a valuable tool for document research, with applications in journalism, academic research, legal work, and many other fields. In this work, we contrast two classes of systems for large-scale multi-document summarization (MDS): compression and full-text. Compression-based methods use a multi-stage pipeline and often lead to lossy summaries. Full-text methods promise a lossless summary by relying on recent advances in long-context reasoning. To understand their utility on large-scale MDS, we evaluated them on three datasets, each containing approximately one hundred documents per summary. Our experiments cover a diverse set of long-context transformers (Llama-3.1, Command-R, Jamba-1.5-Mini) and compression methods (retrieval-augmented, hierarchical, incremental). Overall, we find that full-text and retrieval methods perform the best in most settings. With further analysis into the salient information retention patterns, we show that compression-based methods show strong promise at intermediate stages, even outperforming full-context. However, they suffer information loss due to their multi-stage pipeline and lack of global context. Our results highlight the need to develop hybrid approaches that combine compression and full-text approaches for optimal performance on large-scale multi-document summarization.


What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence Functions

arXiv.org Artificial Intelligence

Large language models (LLMs) are trained on a vast amount of human-written data, but data providers often remain uncredited. In response to this issue, data valuation (or data attribution), which quantifies the contribution or value of each data to the model output, has been discussed as a potential solution. Nevertheless, applying existing data valuation methods to recent LLMs and their vast training datasets has been largely limited by prohibitive compute and memory costs. In this work, we focus on influence functions, a popular gradient-based data valuation method, and significantly improve its scalability with an efficient gradient projection strategy called LoGra that leverages the gradient structure in backpropagation. We then provide a theoretical motivation of gradient projection approaches to influence functions to promote trust in the data valuation process. Lastly, we lower the barrier to implementing data valuation systems by introducing LogIX, a software package that can transform existing training code into data valuation code with minimal effort. In our data valuation experiments, LoGra achieves competitive accuracy against more expensive baselines while showing up to 6,500x improvement in throughput and 5x reduction in GPU memory usage when applied to Llama3-8B-Instruct and the 1B-token dataset.


Calibrated Seq2seq Models for Efficient and Generalizable Ultra-fine Entity Typing

arXiv.org Artificial Intelligence

Ultra-fine entity typing plays a crucial role in information extraction by predicting fine-grained semantic types for entity mentions in text. However, this task poses significant challenges due to the massive number of entity types in the output space. The current state-of-the-art approaches, based on standard multi-label classifiers or cross-encoder models, suffer from poor generalization performance or inefficient inference. In this paper, we present CASENT, a seq2seq model designed for ultra-fine entity typing that predicts ultra-fine types with calibrated confidence scores. Our model takes an entity mention as input and employs constrained beam search to generate multiple types autoregressively. The raw sequence probabilities associated with the predicted types are then transformed into confidence scores using a novel calibration method. We conduct extensive experiments on the UFET dataset which contains over 10k types. Our method outperforms the previous state-of-the-art in terms of F1 score and calibration error, while achieving an inference speedup of over 50 times. Additionally, we demonstrate the generalization capabilities of our model by evaluating it in zero-shot and few-shot settings on five specialized domain entity typing datasets that are unseen during training. Remarkably, our model outperforms large language models with 10 times more parameters in the zero-shot setting, and when fine-tuned on 50 examples, it significantly outperforms ChatGPT on all datasets. Our code, models and demo are available at https://github.com/yanlinf/CASENT.


Background Summarization of Event Timelines

arXiv.org Artificial Intelligence

Generating concise summaries of news events is a challenging natural language processing task. While journalists often curate timelines to highlight key sub-events, newcomers to a news event face challenges in catching up on its historical context. In this paper, we address this need by introducing the task of background news summarization, which complements each timeline update with a background summary of relevant preceding events. We construct a dataset by merging existing timeline datasets and asking human annotators to write a background summary for each timestep of each news event. We establish strong baseline performance using state-of-the-art summarization systems and propose a query-focused variant to generate background summaries. To evaluate background summary quality, we present a question-answering-based evaluation metric, Background Utility Score (BUS), which measures the percentage of questions about a current event timestep that a background summary answers. Our experiments show the effectiveness of instruction fine-tuned systems such as Flan-T5, in addition to strong zero-shot performance using GPT-3.5.


Hierarchical Event Grounding

arXiv.org Artificial Intelligence

Event grounding aims at linking mention references in text corpora to events from a knowledge base (KB). Previous work on this task focused primarily on linking to a single KB event, thereby overlooking the hierarchical aspects of events. Events in documents are typically described at various levels of spatio-temporal granularity (Glavas et al. 2014). These hierarchical relations are utilized in downstream tasks of narrative understanding and schema construction. In this work, we present an extension to the event grounding task that requires tackling hierarchical event structures from the KB. Our proposed task involves linking a mention reference to a set of event labels from a subevent hierarchy in the KB. We propose a retrieval methodology that leverages event hierarchy through an auxiliary hierarchical loss (Murty et al. 2018). On an automatically created multilingual dataset from Wikipedia and Wikidata, our experiments demonstrate the effectiveness of the hierarchical loss against retrieve and re-rank baselines (Wu et al. 2020; Pratapa, Gupta, and Mitamura 2022). Furthermore, we demonstrate the systems' ability to aid hierarchical discovery among unseen events.