Goto

Collaborating Authors

 Prashant Doshi


Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks

Neural Information Processing Systems

Sum-product networks have recently emerged as an attractive representation due to their dual view as a special type of deep neural network with clear semantics and a special type of probabilistic graphical model for which marginal inference is always tractable. These properties follow from the conditions of completeness and decomposability, which must be respected by the structure of the network. As a result, it is not easy to specify a valid sum-product network by hand and therefore structure learning techniques are typically used in practice. This paper describes a new online structure learning technique for feed-forward and recurrent SPNs. The algorithm is demonstrated on real-world datasets with continuous features and sequence datasets of varying length for which the best network architecture is not obvious.


Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks

Neural Information Processing Systems

Sum-product networks have recently emerged as an attractive representation due to their dual view as a special type of deep neural network with clear semantics and a special type of probabilistic graphical model for which marginal inference is always tractable. These properties follow from the conditions of completeness and decomposability, which must be respected by the structure of the network. As a result, it is not easy to specify a valid sum-product network by hand and therefore structure learning techniques are typically used in practice. This paper describes a new online structure learning technique for feed-forward and recurrent SPNs. The algorithm is demonstrated on real-world datasets with continuous features and sequence datasets of varying length for which the best network architecture is not obvious.