Prasanna Sattigeri
Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference
Abhishek Kumar, Prasanna Sattigeri, Tom Fletcher
Semi-supervised learning methods using Generative adversarial networks (GANs) have shown promising empirical success recently. Most of these methods use a shared discriminator/classifier which discriminates real examples from fake while also predicting the class label. Motivated by the ability of the GANs generator to capture the data manifold well, we propose to estimate the tangent space to the data manifold using GANs and employ it to inject invariances into the classifier. In the process, we propose enhancements over existing methods for learning the inverse mapping (i.e., the encoder) which greatly improves in terms of semantic similarity of the reconstructed sample with the input sample. We observe considerable empirical gains in semi-supervised learning over baselines, particularly in the cases when the number of labeled examples is low. We also provide insights into how fake examples influence the semi-supervised learning procedure.
Co-regularized Alignment for Unsupervised Domain Adaptation
Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogerio Feris, Bill Freeman, Gregory Wornell
Deep neural networks, trained with large amount of labeled data, can fail to generalize well when tested with examples from a target domain whose distribution differs from the training data distribution, referred as the source domain. It can be expensive or even infeasible to obtain required amount of labeled data in all possible domains. Unsupervised domain adaptation sets out to address this problem, aiming to learn a good predictive model for the target domain using labeled examples from the source domain but only unlabeled examples from the target domain. Domain alignment approaches this problem by matching the source and target feature distributions, and has been used as a key component in many state-of-the-art domain adaptation methods. However, matching the marginal feature distributions does not guarantee that the corresponding class conditional distributions will be aligned across the two domains. We propose co-regularized domain alignment for unsupervised domain adaptation, which constructs multiple diverse feature spaces and aligns source and target distributions in each of them individually, while encouraging that alignments agree with each other with regard to the class predictions on the unlabeled target examples. The proposed method is generic and can be used to improve any domain adaptation method which uses domain alignment. We instantiate it in the context of a recent state-of-the-art method and observe that it provides significant performance improvements on several domain adaptation benchmarks.
Co-regularized Alignment for Unsupervised Domain Adaptation
Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogerio Feris, Bill Freeman, Gregory Wornell
Deep neural networks, trained with large amount of labeled data, can fail to generalize well when tested with examples from a target domain whose distribution differs from the training data distribution, referred as the source domain. It can be expensive or even infeasible to obtain required amount of labeled data in all possible domains. Unsupervised domain adaptation sets out to address this problem, aiming to learn a good predictive model for the target domain using labeled examples from the source domain but only unlabeled examples from the target domain. Domain alignment approaches this problem by matching the source and target feature distributions, and has been used as a key component in many state-of-the-art domain adaptation methods. However, matching the marginal feature distributions does not guarantee that the corresponding class conditional distributions will be aligned across the two domains. We propose co-regularized domain alignment for unsupervised domain adaptation, which constructs multiple diverse feature spaces and aligns source and target distributions in each of them individually, while encouraging that alignments agree with each other with regard to the class predictions on the unlabeled target examples. The proposed method is generic and can be used to improve any domain adaptation method which uses domain alignment. We instantiate it in the context of a recent state-of-the-art method and observe that it provides significant performance improvements on several domain adaptation benchmarks.
Learning New Tricks From Old Dogs: Multi-Source Transfer Learning From Pre-Trained Networks
Joshua Lee, Prasanna Sattigeri, Gregory Wornell
The advent of deep learning algorithms for mobile devices and sensors has led to a dramatic expansion in the availability and number of systems trained on a wide range of machine learning tasks, creating a host of opportunities and challenges in the realm of transfer learning. Currently, most transfer learning methods require some kind of control over the systems learned, either by enforcing constraints during the source training, or through the use of a joint optimization objective between tasks that requires all data be co-located for training. However, for practical, privacy, or other reasons, in a variety of applications we may have no control over the individual source task training, nor access to source training samples. Instead we only have access to features pre-trained on such data as the output of "black-boxes." For such scenarios, we consider the multi-source learning problem of training a classifier using an ensemble of pre-trained neural networks for a set of classes that have not been observed by any of the source networks, and for which we have very few training samples. We show that by using these distributed networks as feature extractors, we can train an effective classifier in a computationally-efficient manner using tools from (nonlinear) maximal correlation analysis. In particular, we develop a method we refer to as maximal correlation weighting (MCW) to build the required target classifier from an appropriate weighting of the feature functions from the source networks. We illustrate the effectiveness of the resulting classifier on datasets derived from the CIFAR-100, Stanford Dogs, and Tiny ImageNet datasets, and, in addition, use the methodology to characterize the relative value of different source tasks in learning a target task.
Learning New Tricks From Old Dogs: Multi-Source Transfer Learning From Pre-Trained Networks
Joshua Lee, Prasanna Sattigeri, Gregory Wornell
The advent of deep learning algorithms for mobile devices and sensors has led to a dramatic expansion in the availability and number of systems trained on a wide range of machine learning tasks, creating a host of opportunities and challenges in the realm of transfer learning. Currently, most transfer learning methods require some kind of control over the systems learned, either by enforcing constraints during the source training, or through the use of a joint optimization objective between tasks that requires all data be co-located for training. However, for practical, privacy, or other reasons, in a variety of applications we may have no control over the individual source task training, nor access to source training samples. Instead we only have access to features pre-trained on such data as the output of "black-boxes." For such scenarios, we consider the multi-source learning problem of training a classifier using an ensemble of pre-trained neural networks for a set of classes that have not been observed by any of the source networks, and for which we have very few training samples. We show that by using these distributed networks as feature extractors, we can train an effective classifier in a computationally-efficient manner using tools from (nonlinear) maximal correlation analysis. In particular, we develop a method we refer to as maximal correlation weighting (MCW) to build the required target classifier from an appropriate weighting of the feature functions from the source networks. We illustrate the effectiveness of the resulting classifier on datasets derived from the CIFAR-100, Stanford Dogs, and Tiny ImageNet datasets, and, in addition, use the methodology to characterize the relative value of different source tasks in learning a target task.