Prasad, Vignesh
2HandedAfforder: Learning Precise Actionable Bimanual Affordances from Human Videos
Heidinger, Marvin, Jauhri, Snehal, Prasad, Vignesh, Chalvatzaki, Georgia
When interacting with objects, humans effectively reason about which regions of objects are viable for an intended action, i.e., the affordance regions of the object. They can also account for subtle differences in object regions based on the task to be performed and whether one or two hands need to be used. However, current vision-based affordance prediction methods often reduce the problem to naive object part segmentation. In this work, we propose a framework for extracting affordance data from human activity video datasets. Our extracted 2HANDS dataset contains precise object affordance region segmentations and affordance class-labels as narrations of the activity performed. The data also accounts for bimanual actions, i.e., two hands co-ordinating and interacting with one or more objects. We present a VLM-based affordance prediction model, 2HandedAfforder, trained on the dataset and demonstrate superior performance over baselines in affordance region segmentation for various activities. Finally, we show that our predicted affordance regions are actionable, i.e., can be used by an agent performing a task, through demonstration in robotic manipulation scenarios.
6DOPE-GS: Online 6D Object Pose Estimation using Gaussian Splatting
Jin, Yufeng, Prasad, Vignesh, Jauhri, Snehal, Franzius, Mathias, Chalvatzaki, Georgia
Efficient and accurate object pose estimation is an essential component for modern vision systems in many applications such as Augmented Reality, autonomous driving, and robotics. While research in model-based 6D object pose estimation has delivered promising results, model-free methods are hindered by the high computational load in rendering and inferring consistent poses of arbitrary objects in a live RGB-D video stream. To address this issue, we present 6DOPE-GS, a novel method for online 6D object pose estimation \& tracking with a single RGB-D camera by effectively leveraging advances in Gaussian Splatting. Thanks to the fast differentiable rendering capabilities of Gaussian Splatting, 6DOPE-GS can simultaneously optimize for 6D object poses and 3D object reconstruction. To achieve the necessary efficiency and accuracy for live tracking, our method uses incremental 2D Gaussian Splatting with an intelligent dynamic keyframe selection procedure to achieve high spatial object coverage and prevent erroneous pose updates. We also propose an opacity statistic-based pruning mechanism for adaptive Gaussian density control, to ensure training stability and efficiency. We evaluate our method on the HO3D and YCBInEOAT datasets and show that 6DOPE-GS matches the performance of state-of-the-art baselines for model-free simultaneous 6D pose tracking and reconstruction while providing a 5$\times$ speedup. We also demonstrate the method's suitability for live, dynamic object tracking and reconstruction in a real-world setting.
MoVEInt: Mixture of Variational Experts for Learning Human-Robot Interactions from Demonstrations
Prasad, Vignesh, Kshirsagar, Alap, Koert, Dorothea, Stock-Homburg, Ruth, Peters, Jan, Chalvatzaki, Georgia
Shared dynamics models are important for capturing the complexity and variability inherent in Human-Robot Interaction (HRI). Therefore, learning such shared dynamics models can enhance coordination and adaptability to enable successful reactive interactions with a human partner. In this work, we propose a novel approach for learning a shared latent space representation for HRIs from demonstrations in a Mixture of Experts fashion for reactively generating robot actions from human observations. We train a Variational Autoencoder (VAE) to learn robot motions regularized using an informative latent space prior that captures the multimodality of the human observations via a Mixture Density Network (MDN). We show how our formulation derives from a Gaussian Mixture Regression formulation that is typically used approaches for learning HRI from demonstrations such as using an HMM/GMM for learning a joint distribution over the actions of the human and the robot. We further incorporate an additional regularization to prevent "mode collapse", a common phenomenon when using latent space mixture models with VAEs. We find that our approach of using an informative MDN prior from human observations for a VAE generates more accurate robot motions compared to previous HMM-based or recurrent approaches of learning shared latent representations, which we validate on various HRI datasets involving interactions such as handshakes, fistbumps, waving, and handovers. Further experiments in a real-world human-to-robot handover scenario show the efficacy of our approach for generating successful interactions with four different human interaction partners.
Transition State Clustering for Interaction Segmentation and Learning
Hahne, Fabian, Prasad, Vignesh, Kshirsagar, Alap, Koert, Dorothea, Stock-Homburg, Ruth Maria, Peters, Jan, Chalvatzaki, Georgia
Hidden Markov Models with an underlying Mixture of Gaussian structure have proven effective in learning Human-Robot Interactions from demonstrations for various interactive tasks via Gaussian Mixture Regression. However, a mismatch occurs when segmenting the interaction using only the observed state of the human compared to the joint state of the human and the robot. To enhance this underlying segmentation and subsequently the predictive abilities of such Gaussian Mixture-based approaches, we take a hierarchical approach by learning an additional mixture distribution on the states at the transition boundary. This helps prevent misclassifications that usually occur in such states. We find that our framework improves the performance of the underlying Gaussian Mixture-based approach, which we evaluate on various interactive tasks such as handshaking and fistbumps.
Kinematically Constrained Human-like Bimanual Robot-to-Human Handovers
Gรถksu, Yasemin, Correia, Antonio De Almeida, Prasad, Vignesh, Kshirsagar, Alap, Koert, Dorothea, Peters, Jan, Chalvatzaki, Georgia
Bimanual handovers are crucial for transferring large, deformable or delicate objects. This paper proposes a framework for generating kinematically constrained human-like bimanual robot motions to ensure seamless and natural robot-to-human object handovers. We use a Hidden Semi-Markov Model (HSMM) to reactively generate suitable response trajectories for a robot based on the observed human partner's motion. The trajectories are adapted with task space constraints to ensure accurate handovers. Results from a pilot study show that our approach is perceived as more human--like compared to a baseline Inverse Kinematics approach.
Learning Multimodal Latent Dynamics for Human-Robot Interaction
Prasad, Vignesh, Heitlinger, Lea, Koert, Dorothea, Stock-Homburg, Ruth, Peters, Jan, Chalvatzaki, Georgia
This article presents a method for learning well-coordinated Human-Robot Interaction (HRI) from Human-Human Interactions (HHI). We devise a hybrid approach using Hidden Markov Models (HMMs) as the latent space priors for a Variational Autoencoder to model a joint distribution over the interacting agents. We leverage the interaction dynamics learned from HHI to learn HRI and incorporate the conditional generation of robot motions from human observations into the training, thereby predicting more accurate robot trajectories. The generated robot motions are further adapted with Inverse Kinematics to ensure the desired physical proximity with a human, combining the ease of joint space learning and accurate task space reachability. For contact-rich interactions, we modulate the robot's stiffness using HMM segmentation for a compliant interaction. We verify the effectiveness of our approach deployed on a Humanoid robot via a user study. Our method generalizes well to various humans despite being trained on data from just two humans. We find that Users perceive our method as more human-like, timely, and accurate and rank our method with a higher degree of preference over other baselines.
MILD: Multimodal Interactive Latent Dynamics for Learning Human-Robot Interaction
Prasad, Vignesh, Koert, Dorothea, Stock-Homburg, Ruth, Peters, Jan, Chalvatzaki, Georgia
Modeling interaction dynamics to generate robot trajectories that enable a robot to adapt and react to a human's actions and intentions is critical for efficient and effective collaborative Human-Robot Interactions (HRI). Learning from Demonstration (LfD) methods from Human-Human Interactions (HHI) have shown promising results, especially when coupled with representation learning techniques. However, such methods for learning HRI either do not scale well to high dimensional data or cannot accurately adapt to changing via-poses of the interacting partner. We propose Multimodal Interactive Latent Dynamics (MILD), a method that couples deep representation learning and probabilistic machine learning to address the problem of two-party physical HRIs. We learn the interaction dynamics from demonstrations, using Hidden Semi-Markov Models (HSMMs) to model the joint distribution of the interacting agents in the latent space of a Variational Autoencoder (VAE). Our experimental evaluations for learning HRI from HHI demonstrations show that MILD effectively captures the multimodality in the latent representations of HRI tasks, allowing us to decode the varying dynamics occurring in such tasks. Compared to related work, MILD generates more accurate trajectories for the controlled agent (robot) when conditioned on the observed agent's (human) trajectory. Notably, MILD can learn directly from camera-based pose estimations to generate trajectories, which we then map to a humanoid robot without the need for any additional training.