Prasad, Rohit
Advancing the State of the Art in Open Domain Dialog Systems through the Alexa Prize
Khatri, Chandra, Hedayatnia, Behnam, Venkatesh, Anu, Nunn, Jeff, Pan, Yi, Liu, Qing, Song, Han, Gottardi, Anna, Kwatra, Sanjeev, Pancholi, Sanju, Cheng, Ming, Chen, Qinglang, Stubel, Lauren, Gopalakrishnan, Karthik, Bland, Kate, Gabriel, Raefer, Mandal, Arindam, Hakkani-Tur, Dilek, Hwang, Gene, Michel, Nate, King, Eric, Prasad, Rohit
Building open domain conversational systems that allow users to have engaging conversations on topics of their choice is a challenging task. Alexa Prize was launched in 2016 to tackle the problem of achieving natural, sustained, coherent and engaging open-domain dialogs. In the second iteration of the competition in 2018, university teams advanced the state of the art by using context in dialog models, leveraging knowledge graphs for language understanding, handling complex utterances, building statistical and hierarchical dialog managers, and leveraging model-driven signals from user responses. The 2018 competition also included the provision of a suite of tools and models to the competitors including the CoBot (conversational bot) toolkit, topic and dialog act detection models, conversation evaluators, and a sensitive content detection model so that the competing teams could focus on building knowledge-rich, coherent and engaging multi-turn dialog systems. This paper outlines the advances developed by the university teams as well as the Alexa Prize team to achieve the common goal of advancing the science of Conversational AI. We address several key open-ended problems such as conversational speech recognition, open domain natural language understanding, commonsense reasoning, statistical dialog management and dialog evaluation. These collaborative efforts have driven improved experiences by Alexa users to an average rating of 3.61, median duration of 2 mins 18 seconds, and average turns to 14.6, increases of 14%, 92%, 54% respectively since the launch of the 2018 competition. For conversational speech recognition, we have improved our relative Word Error Rate by 55% and our relative Entity Error Rate by 34% since the launch of the Alexa Prize. Socialbots improved in quality significantly more rapidly in 2018, in part due to the release of the CoBot toolkit, with new entrants attaining an average rating of 3.35 just 1 week into the semifinals, compared to 9 weeks in the 2017 competition.
On Evaluating and Comparing Open Domain Dialog Systems
Venkatesh, Anu, Khatri, Chandra, Ram, Ashwin, Guo, Fenfei, Gabriel, Raefer, Nagar, Ashish, Prasad, Rohit, Cheng, Ming, Hedayatnia, Behnam, Metallinou, Angeliki, Goel, Rahul, Yang, Shaohua, Raju, Anirudh
Conversational agents are exploding in popularity. However, much work remains in the area of non goal-oriented conversations, despite significant growth in research interest over recent years. To advance the state of the art in conversational AI, Amazon launched the Alexa Prize, a 2.5-million dollar university competition where sixteen selected university teams built conversational agents to deliver the best social conversational experience. Alexa Prize provided the academic community with the unique opportunity to perform research with a live system used by millions of users. The subjectivity associated with evaluating conversations is key element underlying the challenge of building non-goal oriented dialogue systems. In this paper, we propose a comprehensive evaluation strategy with multiple metrics designed to reduce subjectivity by selecting metrics which correlate well with human judgement. The proposed metrics provide granular analysis of the conversational agents, which is not captured in human ratings. We show that these metrics can be used as a reasonable proxy for human judgment. We provide a mechanism to unify the metrics for selecting the top performing agents, which has also been applied throughout the Alexa Prize competition. To our knowledge, to date it is the largest setting for evaluating agents with millions of conversations and hundreds of thousands of ratings from users. We believe that this work is a step towards an automatic evaluation process for conversational AIs.
Alexa Prize — State of the Art in Conversational AI
Khatri, Chandra (Amazon) | Venkatesh, Anu (Amazon Alexa) | Hedayatnia, Behnam (Amazon Alexa) | Gabriel, Raefer (Amazon Alexa) | Ram, Ashwin (Google Cloud) | Prasad, Rohit (Amazon Alexa)
Eighteen teams were selected for the inaugural competition last year. To build their socialbots, the students combined state-of-the-art techniques with their own novel strategies in the areas of natural language understanding and conversational AI. This article reports on the research conducted over the 2017-2018 year. While the 20-minute grand challenge was not achieved in the first year, the competition produced several conversational agents that advanced the state of the art, that are interesting for everyday users to interact with, and that help form a baseline for the second year of the competition. We conclude with a summary of the human conversation have applicability in both work that we plan to address in the second year of professional and everyday domains. The first generation of such assistants -- Amazon's Alexa, Apple's Siri, Google The Alexa Prize competition received hundreds of Assistant, and Microsoft's Cortana -- have been applications from interested universities. After a focused on short, task-oriented interactions, such as detailed review of the applications, Amazon playing music or answering simple questions, as announced 12 sponsored and 6 unsponsored teams opposed to the longer free-form conversations that as the inaugural cohort for the Alexa Prize. The teams occur naturally in social and professional human that went live for the 2017 competition, listed alphabetically interaction. Conversational AI is the study of techniques by university, were DeisBot (Brandeis University), for creating software agents that can engage Magnus (Carnegie Mellon University), in natural conversational interactions with humans.