Prasad, Ranjitha
Noise Resilient Over-The-Air Federated Learning In Heterogeneous Wireless Networks
Shaban, Zubair, Shah, Nazreen, Prasad, Ranjitha
In 6G wireless networks, Artificial Intelligence (AI)-driven applications demand the adoption of Federated Learning (FL) to enable efficient and privacy-preserving model training across distributed devices. Over-The-Air Federated Learning (OTA-FL) exploits the superposition property of multiple access channels, allowing edge users in 6G networks to efficiently share spectral resources and perform low-latency global model aggregation. However, these advantages come with challenges, as traditional OTA-FL techniques suffer due to the joint effects of Additive White Gaussian Noise (AWGN) at the server, fading, and both data and system heterogeneity at the participating edge devices. In this work, we propose the novel Noise Resilient Over-the-Air Federated Learning (NoROTA-FL) framework to jointly tackle these challenges in federated wireless networks. In NoROTA-FL, the local optimization problems find controlled inexact solutions, which manifests as an additional proximal constraint at the clients. This approach provides robustness against straggler-induced partial work, heterogeneity, noise, and fading. From a theoretical perspective, we leverage the zeroth- and first-order inexactness and establish convergence guarantees for non-convex optimization problems in the presence of heterogeneous data and varying system capabilities. Experimentally, we validate NoROTA-FL on real-world datasets, including FEMNIST, CIFAR10, and CIFAR100, demonstrating its robustness in noisy and heterogeneous environments. Compared to state-of-the-art baselines such as COTAF and FedProx, NoROTA-FL achieves significantly more stable convergence and higher accuracy, particularly in the presence of stragglers.
On the Convergence of Continual Federated Learning Using Incrementally Aggregated Gradients
Keshri, Satish Kumar, Shah, Nazreen, Prasad, Ranjitha
The holy grail of machine learning is to enable Continual Federated Learning (CFL) to enhance the efficiency, privacy, and scalability of AI systems while learning from streaming data. The primary challenge of a CFL system is to overcome global catastrophic forgetting, wherein the accuracy of the global model trained on new tasks declines on the old tasks. In this work, we propose Continual Federated Learning with Aggregated Gradients (C-FLAG), a novel replay-memory based federated strategy consisting of edge-based gradient updates on memory and aggregated gradients on the current data. We provide convergence analysis of the C-FLAG approach which addresses forgetting and bias while converging at a rate of $O(1/\sqrt{T})$ over $T$ communication rounds. We formulate an optimization sub-problem that minimizes catastrophic forgetting, translating CFL into an iterative algorithm with adaptive learning rates that ensure seamless learning across tasks. We empirically show that C-FLAG outperforms several state-of-the-art baselines on both task and class-incremental settings with respect to metrics such as accuracy and forgetting.
On Homomorphic Encryption Based Strategies for Class Imbalance in Federated Learning
Guleria, Arpit, Harshan, J., Prasad, Ranjitha, Bharath, B. N.
Class imbalance in training datasets can lead to bias and poor generalization in machine learning models. While pre-processing of training datasets can efficiently address both these issues in centralized learning environments, it is challenging to detect and address these issues in a distributed learning environment such as federated learning. In this paper, we propose FLICKER, a privacy preserving framework to address issues related to global class imbalance in federated learning. At the heart of our contribution lies the popular CKKS homomorphic encryption scheme, which is used by the clients to privately share their data attributes, and subsequently balance their datasets before implementing the FL scheme. Extensive experimental results show that our proposed method significantly improves the FL accuracy numbers when used along with popular datasets and relevant baselines.
Over-The-Air Clustered Wireless Federated Learning
Madhan-Sohini, Ayush, Dominic, Divin, Shah, Nazreen, Prasad, Ranjitha
Privacy and bandwidth constraints have led to the use of federated learning (FL) in wireless systems, where training a machine learning (ML) model is accomplished collaboratively without sharing raw data. While using bandwidth-constrained uplink wireless channels, over-the-air (OTA) FL is preferred since the clients can transmit parameter updates simultaneously to a server. A powerful server may not be available for parameter aggregation due to increased latency and server failures. In the absence of a powerful server, decentralised strategy is employed where clients communicate with their neighbors to obtain a consensus ML model while incurring huge communication cost. In this work, we propose the OTA semi-decentralised clustered wireless FL (CWFL) and CWFL-Prox algorithms, which is communication efficient as compared to the decentralised FL strategy, while the parameter updates converge to global minima as O(1/T) for each cluster. Using the MNIST and CIFAR10 datasets, we demonstrate the accuracy performance of CWFL is comparable to the central-server based COTAF and proximal constraint based methods, while beating single-client based ML model by vast margins in accuracy.
CLIMAX: An exploration of Classifier-Based Contrastive Explanations
Nanavati, Praharsh, Prasad, Ranjitha
Explainable AI is an evolving area that deals with understanding the decision making of machine learning models so that these models are more transparent, accountable, and understandable for humans. In particular, post-hoc model-agnostic interpretable AI techniques explain the decisions of a black-box ML model for a single instance locally, without the knowledge of the intrinsic nature of the ML model. Despite their simplicity and capability in providing valuable insights, existing approaches fail to deliver consistent and reliable explanations. Moreover, in the context of black-box classifiers, existing approaches justify the predicted class, but these methods do not ensure that the explanation scores strongly differ as compared to those of another class. In this work we propose a novel post-hoc model agnostic XAI technique that provides contrastive explanations justifying the classification of a black box classifier along with a reasoning as to why another class was not predicted. Our method, which we refer to as CLIMAX which is short for Contrastive Label-aware Influence-based Model Agnostic XAI, is based on local classifiers . In order to ensure model fidelity of the explainer, we require the perturbations to be such that it leads to a class-balanced surrogate dataset. Towards this, we employ a label-aware surrogate data generation method based on random oversampling and Gaussian Mixture Model sampling. Further, we propose influence subsampling in order to retaining effective samples and hence ensure sample complexity. We show that we achieve better consistency as compared to baselines such as LIME, BayLIME, and SLIME. We also depict results on textual and image based datasets, where we generate contrastive explanations for any black-box classification model where one is able to only query the class probabilities for an instance of interest.
DAGSurv: Directed Acyclic Graph Based Survival Analysis Using Deep Neural Networks
Sharma, Ansh Kumar, Kukreja, Rahul, Prasad, Ranjitha, Rao, Shilpa
Causal structures for observational survival data provide crucial information regarding the relationships between covariates and time-to-event. We derive motivation from the information theoretic source coding argument, and show that incorporating the knowledge of the directed acyclic graph (DAG) can be beneficial if suitable source encoders are employed. As a possible source encoder in this context, we derive a variational inference based conditional variational autoencoder for causal structured survival prediction, which we refer to as DAGSurv. We illustrate the performance of DAGSurv on low and high-dimensional synthetic datasets, and real-world datasets such as METABRIC and GBSG. We demonstrate that the proposed method outperforms other survival analysis baselines such as Cox Proportional Hazards, DeepSurv and Deephit, which are oblivious to the underlying causal relationship between data entities.
B-SMALL: A Bayesian Neural Network approach to Sparse Model-Agnostic Meta-Learning
Madan, Anish, Prasad, Ranjitha
There is a growing interest in the learning-to-learn paradigm, also known as meta-learning, where models infer on new tasks using a few training examples. Recently, meta-learning based methods have been widely used in few-shot classification, regression, reinforcement learning, and domain adaptation. The model-agnostic meta-learning (MAML) algorithm is a well-known algorithm that obtains model parameter initialization at meta-training phase. In the meta-test phase, this initialization is rapidly adapted to new tasks by using gradient descent. However, meta-learning models are prone to overfitting since there are insufficient training tasks resulting in over-parameterized models with poor generalization performance for unseen tasks. In this paper, we propose a Bayesian neural network based MAML algorithm, which we refer to as the B-SMALL algorithm. The proposed framework incorporates a sparse variational loss term alongside the loss function of MAML, which uses a sparsifying approximated KL divergence as a regularizer. We demonstrate the performance of B-MAML using classification and regression tasks, and highlight that training a sparsifying BNN using MAML indeed improves the parameter footprint of the model while performing at par or even outperforming the MAML approach. We also illustrate applicability of our approach in distributed sensor networks, where sparsity and meta-learning can be beneficial.
Hi-CI: Deep Causal Inference in High Dimensions
Sharma, Ankit, Gupta, Garima, Prasad, Ranjitha, Chatterjee, Arnab, Vig, Lovekesh, Shroff, Gautam
We address the problem of counterfactual regression using causal inference (CI) in observational studies consisting of high dimensional covariates and high cardinality treatments. Confounding bias, which leads to inaccurate treatment effect estimation, is attributed to covariates that affect both treatments and outcome. The presence of high-dimensional covariates exacerbates the impact of bias as it is harder to isolate and measure the impact of these confounders. In the presence of high-cardinality treatment variables, CI is rendered ill-posed due to the increase in the number of counterfactual outcomes to be predicted. We propose Hi-CI, a deep neural network (DNN) based framework for estimating causal effects in the presence of large number of covariates, and high-cardinal and continuous treatment variables. The proposed architecture comprises of a decorrelation network and an outcome prediction network. In the decorrelation network, we learn a data representation in lower dimensions as compared to the original covariates, and addresses confounding bias alongside. Subsequently, in the outcome prediction network, we learn an embedding of high-cardinality and continuous treatments, jointly with the data representation. We demonstrate the efficacy of causal effect prediction of the proposed Hi-CI network using synthetic and real-world NEWS datasets.