Prasad, Grusha
SPAWNing Structural Priming Predictions from a Cognitively Motivated Parser
Prasad, Grusha, Linzen, Tal
Structural priming is a widely used psycholinguistic paradigm to study human sentence representations. In this work we propose a framework for using empirical priming patterns to build a theory characterizing the structural representations humans construct when processing sentences. This framework uses a new cognitively motivated parser, SPAWN, to generate quantitative priming predictions from theoretical syntax and evaluate these predictions with empirical human behavior. As a case study, we apply this framework to study reduced relative clause representations in English. We use SPAWN to generate priming predictions from two theoretical accounts which make different assumptions about the structure of relative clauses. We find that the predictions from only one of these theories (Participial-Phase) align with empirical priming patterns, thus highlighting which assumptions about relative clause better capture human sentence representations.
Can training neural language models on a curriculum with developmentally plausible data improve alignment with human reading behavior?
Chobey, Aryaman, Smith, Oliver, Wang, Anzi, Prasad, Grusha
The use of neural language models to model human behavior has met with mixed success. While some work has found that the surprisal estimates from these models can be used to predict a wide range of human neural and behavioral responses, other work studying more complex syntactic phenomena has found that these surprisal estimates generate incorrect behavioral predictions. This paper explores the extent to which the misalignment between empirical and model-predicted behavior can be minimized by training models on more developmentally plausible data, such as in the BabyLM Challenge. We trained teacher language models on the BabyLM "strict-small" dataset and used sentence level surprisal estimates from these teacher models to create a curriculum. We found tentative evidence that our curriculum made it easier for models to acquire linguistic knowledge from the training data: on the subset of tasks in the BabyLM challenge suite evaluating models' grammatical knowledge of English, models first trained on the BabyLM data curriculum and then on a few randomly ordered training epochs performed slightly better than models trained on randomly ordered epochs alone. This improved linguistic knowledge acquisition did not result in better alignment with human reading behavior, however: models trained on the BabyLM dataset (with or without a curriculum) generated predictions that were as misaligned with human behavior as models trained on larger less curated datasets. This suggests that training on developmentally plausible datasets alone is likely insufficient to generate language models capable of accurately predicting human language processing.
Dynabench: Rethinking Benchmarking in NLP
Kiela, Douwe, Bartolo, Max, Nie, Yixin, Kaushik, Divyansh, Geiger, Atticus, Wu, Zhengxuan, Vidgen, Bertie, Prasad, Grusha, Singh, Amanpreet, Ringshia, Pratik, Ma, Zhiyi, Thrush, Tristan, Riedel, Sebastian, Waseem, Zeerak, Stenetorp, Pontus, Jia, Robin, Bansal, Mohit, Potts, Christopher, Williams, Adina
We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking. Dynabench runs in a web browser and supports human-and-model-in-the-loop dataset creation: annotators seek to create examples that a target model will misclassify, but that another person will not. In this paper, we argue that Dynabench addresses a critical need in our community: contemporary models quickly achieve outstanding performance on benchmark tasks but nonetheless fail on simple challenge examples and falter in real-world scenarios. With Dynabench, dataset creation, model development, and model assessment can directly inform each other, leading to more robust and informative benchmarks. We report on four initial NLP tasks, illustrating these concepts and highlighting the promise of the platform, and address potential objections to dynamic benchmarking as a new standard for the field.