Goto

Collaborating Authors

 Prakash, Anusha


Technology Pipeline for Large Scale Cross-Lingual Dubbing of Lecture Videos into Multiple Indian Languages

arXiv.org Artificial Intelligence

Cross-lingual dubbing of lecture videos requires the transcription of the original audio, correction and removal of disfluencies, domain term discovery, text-to-text translation into the target language, chunking of text using target language rhythm, text-to-speech synthesis followed by isochronous lipsyncing to the original video. This task becomes challenging when the source and target languages belong to different language families, resulting in differences in generated audio duration. This is further compounded by the original speaker's rhythm, especially for extempore speech. This paper describes the challenges in regenerating English lecture videos in Indian languages semi-automatically. A prototype is developed for dubbing lectures into 9 Indian languages. A mean-opinion-score (MOS) is obtained for two languages, Hindi and Tamil, on two different courses. The output video is compared with the original video in terms of MOS (1-5) and lip synchronisation with scores of 4.09 and 3.74, respectively. The human effort also reduces by 75%.


Multi-Relational Question Answering from Narratives: Machine Reading and Reasoning in Simulated Worlds

arXiv.org Artificial Intelligence

Question Answering (QA), as a research field, has primarily focused on either knowledge bases (KBs) or free text as a source of knowledge. These two sources have historically shaped the kinds of questions that are asked over these sources, and the methods developed to answer them. In this work, we look towards a practical use-case of QA over user-instructed knowledge that uniquely combines elements of both structured QA over knowledge bases, and unstructured QA over narrative, introducing the task of multi-relational QA over personal narrative. As a first step towards this goal, we make three key contributions: (i) we generate and release TextWorldsQA, a set of five diverse datasets, where each dataset contains dynamic narrative that describes entities and relations in a simulated world, paired with variably compositional questions over that knowledge, (ii) we perform a thorough evaluation and analysis of several state-of-the-art QA models and their variants at this task, and (iii) we release a lightweight Python-based framework we call TextWorlds for easily generating arbitrary additional worlds and narrative, with the goal of allowing the community to create and share a growing collection of diverse worlds as a test-bed for this task.