Goto

Collaborating Authors

 Pozdnyakov, Alexey


Learning Euler Factors of Elliptic Curves

arXiv.org Artificial Intelligence

We apply transformer models and feedforward neural networks to predict Frobenius traces $a_p$ from elliptic curves given other traces $a_q$. We train further models to predict $a_p \bmod 2$ from $a_q \bmod 2$, and cross-analysis such as $a_p \bmod 2$ from $a_q$. Our experiments reveal that these models achieve high accuracy, even in the absence of explicit number-theoretic tools like functional equations of $L$-functions. We also present partial interpretability findings.