Goto

Collaborating Authors

 Poursaeed, Omid


Universal Pyramid Adversarial Training for Improved ViT Performance

arXiv.org Artificial Intelligence

Recently, Pyramid Adversarial training (Herrmann et al., 2022) has been shown to be very effective for improving clean accuracy and distribution-shift robustness of vision transformers. However, due to the iterative nature of adversarial training, the technique is up to 7 times more expensive than standard training. To make the method more efficient, we propose Universal Pyramid Adversarial training, where we learn a single pyramid adversarial pattern shared across the whole dataset instead of the sample-wise patterns. With our proposed technique, we decrease the computational cost of Pyramid Adversarial training by up to 70% while retaining the majority of its benefit on clean performance and distribution-shift robustness. In addition, to the best of our knowledge, we are also the first to find that universal adversarial training can be leveraged to improve clean model performance.


Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

arXiv.org Artificial Intelligence

Modern hierarchical vision transformers have added several vision-specific components in the pursuit of supervised classification performance. While these components lead to effective accuracies and attractive FLOP counts, the added complexity actually makes these transformers slower than their vanilla ViT counterparts. In this paper, we argue that this additional bulk is unnecessary. By pretraining with a strong visual pretext task (MAE), we can strip out all the bells-and-whistles from a state-of-the-art multi-stage vision transformer without losing accuracy. In the process, we create Hiera, an extremely simple hierarchical vision transformer that is more accurate than previous models while being significantly faster both at inference and during training. We evaluate Hiera on a variety of tasks for image and video recognition. Our code and models are available at https://github.com/facebookresearch/hiera.


Deep Fundamental Matrix Estimation without Correspondences

arXiv.org Machine Learning

Estimating fundamental matrices is a classic problem in computer vision. Traditional methods rely heavily on the correctness of estimated key-point correspondences, which can be noisy and unreliable. As a result, it is difficult for these methods to handle image pairs with large occlusion or significantly different camera poses. In this paper, we propose novel neural network architectures to estimate fundamental matrices in an end-to-end manner without relying on point correspondences. New modules and layers are introduced in order to preserve mathematical properties of the fundamental matrix as a homogeneous rank-2 matrix with seven degrees of freedom. We analyze performance of the proposed models using various metrics on the KITTI dataset, and show that they achieve competitive performance with traditional methods without the need for extracting correspondences.


Generative Adversarial Perturbations

arXiv.org Machine Learning

In this paper, we propose novel generative models for creating adversarial examples, slightly perturbed images resembling natural images but maliciously crafted to fool pre-trained models. We present trainable deep neural networks for transforming images to adversarial perturbations. Our proposed models can produce image-agnostic and image-dependent perturbations for both targeted and non-targeted attacks. We also demonstrate that similar architectures can achieve impressive results in fooling classification and semantic segmentation models, obviating the need for hand-crafting attack methods for each task. Using extensive experiments on challenging high-resolution datasets such as ImageNet and Cityscapes, we show that our perturbations achieve high fooling rates with small perturbation norms. Moreover, our attacks are considerably faster than current iterative methods at inference time.


Stacked Generative Adversarial Networks

arXiv.org Machine Learning

In this paper, we propose a novel generative model named Stacked Generative Adversarial Networks (SGAN), which is trained to invert the hierarchical representations of a bottom-up discriminative network. Our model consists of a top-down stack of GANs, each learned to generate lower-level representations conditioned on higher-level representations. A representation discriminator is introduced at each feature hierarchy to encourage the representation manifold of the generator to align with that of the bottom-up discriminative network, leveraging the powerful discriminative representations to guide the generative model. In addition, we introduce a conditional loss that encourages the use of conditional information from the layer above, and a novel entropy loss that maximizes a variational lower bound on the conditional entropy of generator outputs. We first train each stack independently, and then train the whole model end-to-end. Unlike the original GAN that uses a single noise vector to represent all the variations, our SGAN decomposes variations into multiple levels and gradually resolves uncertainties in the top-down generative process. Based on visual inspection, Inception scores and visual Turing test, we demonstrate that SGAN is able to generate images of much higher quality than GANs without stacking.