Goto

Collaborating Authors

 Poupart, Pascal


Progressive Memory Banks for Incremental Domain Adaptation

arXiv.org Artificial Intelligence

This paper addresses the problem of incremental domain adaptation (IDA). We assume each domain comes one after another, and that we could only access data in the current domain. The goal of IDA is to build a unified model performing well on all the domains that we have encountered. We propose to augment a recurrent neural network (RNN) with a directly parameterized memory bank, which is retrieved by an attention mechanism at each step of RNN transition. The memory bank provides a natural way of IDA: when adapting our model to a new domain, we progressively add new slots to the memory bank, which increases the number of parameters, and thus the model capacity. We learn the new memory slots and fine-tune existing parameters by back-propagation. Experimental results show that our approach achieves significantly better performance than fine-tuning alone, which suffers from the catastrophic forgetting problem. Compared with expanding hidden states, our approach is more robust for old domains, shown by both empirical and theoretical results. Our model also outperforms previous work of IDA including elastic weight consolidation (EWC) and the progressive neural network.


Unsupervised Video Object Segmentation for Deep Reinforcement Learning

arXiv.org Artificial Intelligence

We present a new technique for deep reinforcement learning that automatically detects moving objects and uses the relevant information for action selection. The detection of moving objects is done in an unsupervised way by exploiting structure from motion. Instead of directly learning a policy from raw images, the agent first learns to detect and segment moving objects by exploiting flow information in video sequences. The learned representation is then used to focus the policy of the agent on the moving objects. Over time, the agent identifies which objects are critical for decision making and gradually builds a policy based on relevant moving objects. This approach, which we call Motion-Oriented REinforcement Learning (MOREL), is demonstrated on a suite of Atari games where the ability to detect moving objects reduces the amount of interaction needed with the environment to obtain a good policy. Furthermore, the resulting policy is more interpretable than policies that directly map images to actions or values with a black box neural network. We can gain insight into the policy by inspecting the segmentation and motion of each object detected by the agent. This allows practitioners to confirm whether a policy is making decisions based on sensible information.


On Improving Deep Reinforcement Learning for POMDPs

arXiv.org Machine Learning

Deep Reinforcement Learning (RL) recently emerged as one of the most competitive approaches for learning in sequential decision making problems with fully observable environments, e.g., computer Go. However, very little work has been done in deep RL to handle partially observable environments. We propose a new architecture called Action-specific Deep Recurrent Q-Network (ADRQN) to enhance learning performance in partially observable domains. Actions are encoded by a fully connected layer and coupled with a convolutional observation to form an action-observation pair. The time series of action-observation pairs are then integrated by an LSTM layer that learns latent states based on which a fully connected layer computes Q-values as in conventional Deep Q-Networks (DQNs). We demonstrate the effectiveness of our new architecture in several partially observable domains, including flickering Atari games.


Deep Active Learning for Dialogue Generation

arXiv.org Artificial Intelligence

We propose an online, end-to-end, neural generative conversational model for open-domain dialogue. It is trained using a unique combination of offline two-phase supervised learning and online human-in-the-loop active learning. While most existing research proposes offline supervision or hand-crafted reward functions for online reinforcement, we devise a novel interactive learning mechanism based on hamming-diverse beam search for response generation and one-character user-feedback at each step. Experiments show that our model inherently promotes the generation of semantically relevant and interesting responses, and can be used to train agents with customized personas, moods and conversational styles.


Discovering Conversational Dependencies between Messages in Dialogs

AAAI Conferences

We investigate the task of inferring conversational dependencies between messages in one-on-one online chat, which has become one of the most popular forms of customer service. We propose a novel probabilistic classifier that leverages conversational, lexical and semantic information. The approach is evaluated empirically on a set of customer service chat logs from a Chinese e-commerce website.


Generative Mixture of Networks

arXiv.org Machine Learning

A generative model based on training deep architectures is proposed. The model consists of K networks that are trained together to learn the underlying distribution of a given data set. The process starts with dividing the input data into K clusters and feeding each of them into a separate network. After few iterations of training networks separately, we use an EM-like algorithm to train the networks together and update the clusters of the data. We call this model Mixture of Networks. The provided model is a platform that can be used for any deep structure and be trained by any conventional objective function for distribution modeling. As the components of the model are neural networks, it has high capability in characterizing complicated data distributions as well as clustering data. We apply the algorithm on MNIST hand-written digits and Yale face datasets. We also demonstrate the clustering ability of the model using some real-world and toy examples.


Online Structure Learning for Sum-Product Networks with Gaussian Leaves

arXiv.org Machine Learning

Sum-product networks have recently emerged as an attractive representation due to their dual view as a special type of deep neural network with clear semantics and a special type of probabilistic graphical model for which inference is always tractable. Those properties follow from some conditions (i.e., completeness and decomposability) that must be respected by the structure of the network. As a result, it is not easy to specify a valid sum-product network by hand and therefore structure learning techniques are typically used in practice. This paper describes the first online structure learning technique for continuous SPNs with Gaussian leaves. We also introduce an accompanying new parameter learning technique.


Online Bayesian Moment Matching for Topic Modeling with Unknown Number of Topics

Neural Information Processing Systems

Latent Dirichlet Allocation (LDA) is a very popular model for topic modeling as well as many other problems with latent groups. It is both simple and effective. When the number of topics (or latent groups) is unknown, the Hierarchical Dirichlet Process (HDP) provides an elegant non-parametric extension; however, it is a complex model and it is difficult to incorporate prior knowledge since the distribution over topics is implicit. We propose two new models that extend LDA in a simple and intuitive fashion by directly expressing a distribution over the number of topics. We also propose a new online Bayesian moment matching technique to learn the parameters and the number of topics of those models based on streaming data. The approach achieves higher log-likelihood than batch and online HDP with fixed hyperparameters on several corpora.


A Unified Approach for Learning the Parameters of Sum-Product Networks

Neural Information Processing Systems

We present a unified approach for learning the parameters of Sum-Product networks (SPNs). We prove that any complete and decomposable SPN is equivalent to a mixture of trees where each tree corresponds to a product of univariate distributions. Based on the mixture model perspective, we characterize the objective function when learning SPNs based on the maximum likelihood estimation (MLE) principle and show that the optimization problem can be formulated as a signomial program. We construct two parameter learning algorithms for SPNs by using sequential monomial approximations (SMA) and the concave-convex procedure (CCCP), respectively. The two proposed methods naturally admit multiplicative updates, hence effectively avoiding the projection operation. With the help of the unified framework, we also show that, in the case of SPNs, CCCP leads to the same algorithm as Expectation Maximization (EM) despite the fact that they are different in general.


A Unified Approach for Learning the Parameters of Sum-Product Networks

arXiv.org Artificial Intelligence

We present a unified approach for learning the parameters of Sum-Product networks (SPNs). We prove that any complete and decomposable SPN is equivalent to a mixture of trees where each tree corresponds to a product of univariate distributions. Based on the mixture model perspective, we characterize the objective function when learning SPNs based on the maximum likelihood estimation (MLE) principle and show that the optimization problem can be formulated as a signomial program. We construct two parameter learning algorithms for SPNs by using sequential monomial approximations (SMA) and the concave-convex procedure (CCCP), respectively. The two proposed methods naturally admit multiplicative updates, hence effectively avoiding the projection operation. With the help of the unified framework, we also show that, in the case of SPNs, CCCP leads to the same algorithm as Expectation Maximization (EM) despite the fact that they are different in general.