Goto

Collaborating Authors

 Porter, Bruce


Knowledge Patterns

arXiv.org Artificial Intelligence

This Chapter describes a new technique, called "knowledge patterns", for helping construct axiom-rich, formal ontologies, based on identifying and explicitly representing recurring patterns of knowledge (theory schemata) in the ontology, and then stating how those patterns map onto domain-specific concepts in the ontology. From a modeling perspective, knowledge patterns provide an important insight into the structure of a formal ontology: rather than viewing a formal ontology simply as a list of terms and axioms, knowledge patterns views it as a collection of abstract, modular theories (the "knowledge patterns") plus a collection of modeling decisions stating how different aspects of the world can be modeled using those theories. Knowledge patterns make both those abstract theories and their mappings to the domain of interest explicit, thus making modeling decisions clear, and avoiding some of the ontological confusion that can otherwise arise. In addition, from a computational perspective, knowledge patterns provide a simple and computationally efficient mechanism for facilitating knowledge reuse. We describe the technique and an application built using them, and then critique its strengths and weaknesses. We conclude that this technique enables us to better explicate both the structure and modeling decisions made when constructing a formal axiom-rich ontology.


Project Halo Update--Progress Toward Digital Aristotle

AI Magazine

In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.


Project Halo Updateโ€”Progress Toward Digital Aristotle

AI Magazine

In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.


Memory Based Goal Schema Recognition

AAAI Conferences

We propose a memory-based approach to the problem of goal-schema recognition. We use a generic episodic memory module to perform incremental goal schema recognition and to build the plan library. Unlike other case-based plan recognizers it does not require complete knowledge of the planning domain or the ability to record intermediate planning states. Similarity of plans is computed incrementally using a semantic matcher that considers the type and parameters of the observed actions.ย  We evaluate this approach on two datasets and show that it is able to achieve similar or better performance compared to a statistical approach, but offers important advantages: plan library is acquired incrementally and the memory structure it builds is multi-functional and can be used for other tasks such as plan generation or classification.


Introduction to the Special Issue on Innovative Applications of Artificial Intelligence

AI Magazine

We are very pleased to republish here extended versions of a sample of the papers drawn from the Innovative Applications of Artificial Intelligence Conference (IAAI-06), which was held July 17-20, 2006, in Boston, Massachusetts. Three of these articles describe deployed applications and two describe emerging applications.


Introduction to the Special Issue on Innovative Applications of Artificial Intelligence

AI Magazine

We are very pleased to republish here extended versions of a sample of the papers drawn from the Innovative Applications of Artificial Intelligence Conference (IAAI-06), which was held July 17-20, 2006, in Boston, Massachusetts. Three of these articles describe deployed applications and two describe emerging applications.


Guest Editors' Introduction

AI Magazine

This editorial introduces the articles published in the AI Magazine special issue on Innovative Applications of Artificial Intelligence (IAAI), based on a selection of papers that appeared in the IAAI-05 conference, which occurred July 9-13 2005 in Pittsburgh, Pennsylvania. IAAI is the premier venue for learning about AI's impact through deployed applications and emerging AI application technologies. The emerging applications track features technologies that are rapidly maturing to the point of application. Three articles from the emerging technology track were particularly innovative and demonstrated some unique technology features ripe for deployment.


Guest Editors' Introduction

AI Magazine

This editorial introduces the articles published in the AI Magazine special issue on Innovative Applications of Artificial Intelligence (IAAI), based on a selection of papers that appeared in the IAAI-05 conference, which occurred July 9-13 2005 in Pittsburgh, Pennsylvania. IAAI is the premier venue for learning about AI's impact through deployed applications and emerging AI application technologies. Case studies of deployed applications with measurable benefits arising from the use of AI technology provide clear evidence of the impact and value of AI technology to today's world. The emerging applications track features technologies that are rapidly maturing to the point of application. The six articles selected for this special issue are extended versions of papers that appeared at the conference. Three of the articles describe deployed applications that are already in use in the field. Three articles from the emerging technology track were particularly innovative and demonstrated some unique technology features ripe for deployment.


Project Halo: Towards a Digital Aristotle

AI Magazine

Vulcan selected three teams, each of which was to formally represent 70 pages from the advanced placement (AP) chemistry syllabus and deliver knowledge-based systems capable of answering questions on that syllabus. The evaluation quantified each system's coverage of the syllabus in terms of its ability to answer novel, previously unseen questions and to provide human- readable answer justifications. These justifications will play a critical role in building user trust in the question-answering capabilities of Digital Aristotle. This article presents the motivation and longterm goals of Project Halo, describes in detail the six-month first phase of the project -- the Halo Pilot -- its KR&R challenge, empirical evaluation, results, and failure analysis.


Project Halo: Towards a Digital Aristotle

AI Magazine

Project Halo is a multistaged effort, sponsored by Vulcan Inc, aimed at creating Digital Aristotle, an application that will encompass much of the world's scientific knowledge and be capable of applying sophisticated problem solving to answer novel questions. Vulcan envisions two primary roles for Digital Aristotle: as a tutor to instruct students in the sciences and as an interdisciplinary research assistant to help scientists in their work. As a first step towards this goal, we have just completed a six-month pilot phase designed to assess the state of the art in applied knowledge representation and reasoning (KR&/R). Vulcan selected three teams, each of which was to formally represent 70 pages from the advanced placement (AP) chemistry syllabus and deliver knowledge-based systems capable of answering questions on that syllabus. The evaluation quantified each system's coverage of the syllabus in terms of its ability to answer novel, previously unseen questions and to provide human- readable answer justifications. These justifications will play a critical role in building user trust in the question-answering capabilities of Digital Aristotle. Prior to the final evaluation, a "failure taxonomy' was collaboratively developed in an attempt to standardize failure analysis and to facilitate cross-platform comparisons. Despite differences in approach, all three systems did very well on the challenge, achieving performance comparable to the human median. The analysis also provided key insights into how the approaches might be scaled, while at the same time suggesting how the cost of producing such systems might be reduced. This outcome leaves us highly optimistic that the technical challenges facing this effort in the years to come can be identified and overcome. This article presents the motivation and longterm goals of Project Halo, describes in detail the six-month first phase of the project -- the Halo Pilot -- its KR&R challenge, empirical evaluation, results, and failure analysis. The pilot's outcome is used to define challenges for the next phase of the project and beyond.